Skip to main content

Immune Signaling in Carcinogenesis

  • Chapter
  • First Online:

Abstract

Cancer immunotherapy strategies involve manipulating patients’ immune system to augment tumor immunity and represent a paradigm shift in the treatment cancer . Main immunotherapeutic strategies include regimes such as cytokines, vaccines, an oncolytic virus, adoptive cell therapy, and immune checkpoint blockade. The approach that has sparked the most interest involves inhibition or activation of specific immune checkpoints to regulate T cell function in order to boost patients’ own ability to fight cancer. Under normal physiological conditions, the immune checkpoints are crucial for maintaining self-tolerance to prevent autoimmunity and also to protect tissues from damage during infections. However, in cancer, the function of immune checkpoints is dysregulated in order to suppress the ongoing T cell-mediated antitumor immune responses. Numerous inhibitory (e.g., CTLA-4, PD-1, TIGIT, LAG3, IDO) as well as stimulatory (e.g., OX40, 4-1BB, CD27, STING) immune signaling pathways are being currently targeted for cancer immunotherapy. Two of them, CTLA-4 and PD-1, have been most actively studied in the clinic up till now, and numerous positive clinical trials led to approval of therapies targeting these two pathways across several tumor types. However, despite these significant advances, the majority of patients do not respond favorably to cancer immunotherapies. This may be due to additional mechanisms that can influence the enhancement of T cell function at play, in addition to multiple mechanisms used by tumors to evade the immune system. Hence, future effective immunotherapies will likely involve novel combinations of different immunotherapeutic approaches in addition to targeted therapies that are personalized for maximal benefit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity. 2016;44(5):1069–78. https://doi.org/10.1016/j.immuni.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. https://doi.org/10.1126/science.aaa8172.

    Article  CAS  PubMed  Google Scholar 

  3. Ise W, Kohyama M, Nutsch KM, Lee HM, Suri A, Unanue ER, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol. 2010;11(2):129–35. https://doi.org/10.1038/ni.1835.

    Article  CAS  PubMed  Google Scholar 

  4. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90. https://doi.org/10.1038/nrclinonc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishimura H, Minato N, Nakano T, Honjo T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol. 1998;10(10):1563–72.

    Article  CAS  PubMed  Google Scholar 

  7. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. https://doi.org/10.3389/fphar.2017.00561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 2017;38(1):20–8. https://doi.org/10.1016/j.it.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  9. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. https://doi.org/10.1016/j.ccell.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. https://doi.org/10.1016/j.immuni.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, et al. Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep. 2015;13(2):412–24. https://doi.org/10.1016/j.celrep.2015.08.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ledford H. (2017). Next-generation cancer drugs boost immunotherapy responses. Early clinical trial data suggest that combining medicines improves treatment. Nat News. https://doi.org/10.1038/nature.2017.22092.

  13. Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol. 2015;5:34. https://doi.org/10.3389/fonc.2015.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bartkowiak T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol. 2015;5:117. https://doi.org/10.3389/fonc.2015.00117.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7(6):655–67. https://doi.org/10.2217/imt.15.32.

    Article  CAS  PubMed  Google Scholar 

  16. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42. https://doi.org/10.1016/j.immuni.2014.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilboa E. The promise of cancer vaccines. Nat Rev Cancer. 2004;4(5):401–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Koeppen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, M., Kowanetz, M., Koeppen, H. (2019). Immune Signaling in Carcinogenesis. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics