Advertisement

Design and Implementation of a Service for Cloud HPC Computations

  • Ruslan Kuchumov
  • Vadim Petrunin
  • Vladimir KorkhovEmail author
  • Nikita Balashov
  • Nikolay Kutovskiy
  • Ivan Sokolov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10963)

Abstract

Cloud computing became a routine tool for scientists in many domains. In order to speed up an achievement of scientific results a cloud service for execution of distributed applications was developed. It obliviates users from manually creating virtual cluster environment or using batch scheduler and allows them only to specify input parameters to perform their computations. This service, in turn, deploys virtual cluster, executes supplied job and uploads its results to user’s cloud storage. It consists of several components and implements flexible and modular architecture which allows to add on one side more applications and on another side various types of resources as a computational backends as well as to increase a utilization of cloud idle resources.

Keywords

Cloud computing High performance computing Software as a service 

Notes

Acknowledgements

Research has been supported by the RFBR grant 16-07-01111.

References

  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010).  https://doi.org/10.1145/1721654.1721672CrossRefGoogle Scholar
  2. 2.
    Shawish, A., Salama, M.: Cloud computing: paradigms and technologies. In: Xhafa, F., Bessis, N. (eds.) Inter-cooperative Collective Intelligence: Techniques and Applications, Studies in Computational Intelligence, vol. 495. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-35016-0_2
  3. 3.
    Korkhov, V., Kobyshev, S., Krosheninnikov, A.: Flexible configuration of application-centric virtualized computing infrastructure. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 342–353. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21410-8_27CrossRefGoogle Scholar
  4. 4.
    Korkhov, V., Kobyshev, S., Krosheninnikov, A., Degtyarev, A., Bogdanov, A.: Distributed computing infrastructure based on dynamic container clusters. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 263–275. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42108-7_20CrossRefGoogle Scholar
  5. 5.
    Korkhov, V., Kobyshev, S., Degtyarev, A., Bogdanov, A.: Light-weight cloud-based virtual computing infrastructure for distributed applications and hadoop clusters. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 399–411. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62404-4_29CrossRefGoogle Scholar
  6. 6.
    Chapman, C., Goonatilake, C., Emmerich, W., Farrellee, M., Tannenbaum, T., Livny, M., Calleja, M.: Condor Birdbath - web service interface to Condor. In: Cox, S.J., Walker, D.W., (eds.) Proceedings of the UK e-Science All Hands Meeting 2005, EPSRC: Swindon, UK (2005)Google Scholar
  7. 7.
    Ma, G., Lu, P.: PBSWeb: a web-based interface to the portable batch system. In: 12th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS), Las Vegas, NV, 6–9 November 2000. ACTA Press, Calgary (2000)Google Scholar
  8. 8.
    Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: ViteraaS: virtual cluster as a service. In: 2011 IEEE Third International Conference on Coud Computing Technology and Science (CloudCom), pp. 652–657.  https://doi.org/10.1109/CloudCom.2011.101
  9. 9.
    Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic virtual clustering with Xen and Moab. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA 2006. LNCS, vol. 4331, pp. 440–451. Springer, Heidelberg (2006).  https://doi.org/10.1007/11942634_46CrossRefGoogle Scholar
  10. 10.
    Murphy, M.A., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual organization clusters. In: CCGRID 2009 Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 364–371.  https://doi.org/10.1109/CCGRID.2009.37. ISBN 978-0-7695-3622-4
  11. 11.
    Iakushkin, O., Shichkina, Y., Sedova, O.: Petri Nets for modelling of message passing middleware in cloud computing environments. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 390–402. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42108-7_30CrossRefGoogle Scholar
  12. 12.
    Iakushkin, O., Malevanniy, D., Bogdanov, A., Sedova, O.: Adaptation and deployment of PanDA task management system for a private cloud infrastructure. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 438–447. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62404-4_32CrossRefGoogle Scholar
  13. 13.
    Church, P., Wong, A., Brock, M., Goscinski, A.: Toward exposing and accessing HPC applications in a SaaS cloud. In: IEEE 19th International Conference on Web Services, Honolulu, HI, pp. 692–699 (2012).  https://doi.org/10.1109/ICWS.2012.119
  14. 14.
    Church, P., Goscinski, A., Tari, Z.: SaaS clouds supporting non computing specialists. In: 11th International Conference on Computer Systems and Applications (AICCSA), Doha, pp. 1–8 (2014).  https://doi.org/10.1109/AICCSA.2014.7073171
  15. 15.
    Balashov, N.A., Bashashin, M.V., Kuchumov, R.I., Kutovskiy, N.A., Sokolov, I.A.: JINR cloud service for scientific and engineering computations. Mod. Inf. Technol. IT Educ. 14(1) (2018).  https://doi.org/10.25559/SITITO.14.201801.061-072
  16. 16.
    Baranov, A.V., Balashov, N.A., Kutovskiy, N.A., Semenov, R.N.: JINR cloud infrastructure evolution. Phys. Part. Nuclei Lett. 13, 672–675 (2016).  https://doi.org/10.1134/S1547477116050071CrossRefGoogle Scholar
  17. 17.
    Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing performance overheads in the XEN virtual machine environment. In: VEE 2005, Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments, pp. 13–23, New York, NY, USA (2005)Google Scholar
  18. 18.
    Bashashin, M.V., et al.: Numerical approach and parallel implementation for computer simulation of stacked long Josephson junctions. Comput. Res. Model. 8(4), 593–604 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ruslan Kuchumov
    • 1
  • Vadim Petrunin
    • 1
  • Vladimir Korkhov
    • 1
    Email author
  • Nikita Balashov
    • 2
  • Nikolay Kutovskiy
    • 2
  • Ivan Sokolov
    • 2
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations