Evaluating an Accelerometer-Based System for Spine Shape Monitoring

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10963)


In western societies a huge percentage of the population suffers from some kind of back pain at least once in their life. There are several approaches addressing back pain by postural modifications. Postural training and activity can be tracked by various wearable devices most of which are based on accelerometers. We present research on the accuracy of accelerometer-based posture measurements. To this end, we took simultaneous recordings using an optical motion capture system and a system consisting of five accelerometers in three different settings: On a test robot, in a template, and on actual human backs. We compare the accelerometer-based spine curve reconstruction against the motion capture data. Results show that tilt values from the accelerometers are captured highly accurate, and the spine curve reconstruction works well.



We thank Philipp Löschner and David Scherfgen for supporting us with the motion capture recordings.


  1. 1.
    Robertson, J.T.: The rape of the spine. Surg. Neurol. 39(1), 5–12 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Vällfors, B.: Acute, subacute and chronic low back pain: clinical symptoms, absenteeism and working environment. Scand. J. Rehabil. Med. Suppl. 11, 198 (1985)Google Scholar
  3. 3.
    Rubin, D.I.: Epidemiology and risk factors for spine pain. Neurol. Clin. 25(2), 353–371 (2007). Neck and Back PainCrossRefGoogle Scholar
  4. 4.
    Gaskin, D.J., Richard, P.: The economic costs of pain in the united states. J. Pain 13(8), 715–724 (2012)CrossRefGoogle Scholar
  5. 5.
    Peleg, M., Leung, T.I., Desai, M., Dumontier, M.: Is crowdsourcing patient-reported outcomes the future of evidence-based medicine? A case study of back pain. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS, vol. 10259, pp. 245–255. Springer, Cham (2017). Scholar
  6. 6.
    Colombo, S., Joy, M., Mason, L., Peper, E., Harvey, R., Booiman, A.: Posture change feedback training and its effect on health. In: 48th Annual Meeting of the Association for Applied Psychophysiology and Biofeedback, March 2017Google Scholar
  7. 7.
    Hellstrom, P.A.R., Åkerberg, A., Folke, M.: Posture sensor as feedback when lifting weights. In: 4th International Conference on Ambulatory Monitoring of Physical Activity and Movement, June 2015Google Scholar
  8. 8.
    Fathi, A., Curran, K.: Detection of spine curvature using wireless sensors. J. King Saud Univ. Sci. 29(4), 553–560 (2017)CrossRefGoogle Scholar
  9. 9.
    Noiumkar, S., Tirakoat, S.: Use of optical motion capture in sports science: a case study of golf swing. In: 2013 International Conference on Informatics and Creative Multimedia (ICICM), pp. 310–313. IEEE (2013)Google Scholar
  10. 10.
    MacIver, M., Sharabash, N., Nelson, M.: Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. J. Exp. Biol. 204(3), 543–557 (2001)Google Scholar
  11. 11.
    Culhane, K.M., OConnor, M., Lyons, D., Lyons, G.M.: Accelerometers in rehabilitation medicine for older adults. Age Age. 34(6), 556–560 (2005)CrossRefGoogle Scholar
  12. 12.
    Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of vicon system positioning performance. Sensors 17(7), 1591 (2017)CrossRefGoogle Scholar
  13. 13.
    Bernard, J., Dobermann, E., Vögele, A., Krüger, B., Kohlhammer, J., Fellner, D.: Visual-interactive semi-supervised labeling of human motion capture data. In: Visualization and Data Analysis (VDA 2017), January 2017Google Scholar
  14. 14.
    Chen, X., Koskela, M.: Skeleton-based action recognition with extreme learning machines. Neurocomputing 149, 387–396 (2015)CrossRefGoogle Scholar
  15. 15.
    Wilhelm, N., Vögele, A., Zsoldos, R., Licka, T., Krüger, B., Bernard, J.: Furyexplorer: visual-interactive exploration of horse motion capture data. In: Visualization and Data Analysis (VDA 2015), February 2015Google Scholar
  16. 16.
    Zsoldos, R., Krüger, B., Licka, T.: From maturity to old age: tasks of daily life require a different muscle use in horses. Comp. Exerc. Physiol. 10(2), 75–88 (2014)CrossRefGoogle Scholar
  17. 17.
    Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap database HDM05. Technical report CG-2007-2, Universität Bonn, June 2007Google Scholar
  18. 18.
    CMU: Carnegie Mellon University Graphics Lab: Motion Capture Database (2013)Google Scholar
  19. 19.
    Riaz, Q., Krüger, B., Weber, A.: A relational database for human motion data. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9159, pp. 234–249. Springer, Cham (2015). Scholar
  20. 20.
    Kapadia, M., Chiang, I.k., Thomas, T., Badler, N.I., Kider Jr., J.T., et al.: Efficient motion retrieval in large motion databases. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 19–28. ACM (2013)Google Scholar
  21. 21.
    Wang, P., Lau, R.W., Zhang, M., Wang, J., Song, H., Pan, Z.: A real-time database architecture for motion capture data. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1337–1340. ACM (2011)Google Scholar
  22. 22.
    Awad, C., Courty, N., Gibet, S.: A database architecture for real-time motion retrieval. In: Seventh International Workshop on Content-Based Multimedia Indexing, CBMI 2009, pp. 225–230. IEEE (2009)Google Scholar
  23. 23.
    Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3d human pose. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1263–1272. IEEE (2017)Google Scholar
  24. 24.
    Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. European Conference on Computer Vision, pp. 561–578, Springer, Cham (2016)CrossRefGoogle Scholar
  25. 25.
    Rhodin, H., Richardt, C., Casas, D., Insafutdinov, E., Shafiei, M., Seidel, H.P., Schiele, B., Theobalt, C.: EgoCap: egocentric Marker-less motion capture with two Fisheye cameras. ACM Trans. Graph. (TOG) 35(6), 162 (2016)CrossRefGoogle Scholar
  26. 26.
    Shiratori, T., Park, H.S., Sigal, L., Sheikh, Y., Hodgins, J.K.: Motion capture from body-mounted cameras. ACM Trans. Graph. 30(4), 31:1–31:10 (2011)CrossRefGoogle Scholar
  27. 27.
    Vögele, A., Zsoldos, R., Krüger, B., Licka, T.: Novel methods for surface EMG analysis and exploration based on multi-modal gaussian mixture models. PLOS ONE 11(6), e0157239 (2016)CrossRefGoogle Scholar
  28. 28.
    Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Maidan, I., Giladi, N., Gurevich, T., Hausdorff, J.M.: Can an accelerometer enhance the utility of the timed up & go test when evaluating patients with parkinson’s disease? Med. Eng. Phys. 32(2), 119–125 (2010)CrossRefGoogle Scholar
  29. 29.
    Bourke, A., OBrien, J., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2), 194–199 (2007)CrossRefGoogle Scholar
  30. 30.
    Riaz, Q., Guanhong, T., Krüger, B., Weber, A.: Motion reconstruction using very few accelerometers and ground contacts. Graph. Models 79, 23–38 (2015)CrossRefGoogle Scholar
  31. 31.
    Slyper, R., Hodgins, J.K.: Action capture with accelerometers. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008, pp. 193–199. Eurographics Association (2008)Google Scholar
  32. 32.
    Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., Popović, J.: Practical motion capture in everyday surroundings. ACM Trans. Graph. 26(3), 35 (2007)CrossRefGoogle Scholar
  33. 33.
    Farella, E., Benini, L., Riccò, B., Acquaviva, A.: MOCA: a low-power, low-cost motion capture system based on integrated accelerometers. In: Advances in MultiMedia 2007, no. 1, p. 1 (2007)CrossRefGoogle Scholar
  34. 34.
    Riaz, Q., Vögele, A., Krüger, B., Weber, A.: One small step for a man: estimation of gender, age, and height from recordings of one step by a single inertial sensor. Sensors 15(12), 31999–32019 (2015)CrossRefGoogle Scholar
  35. 35.
    Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Volume 30 of Oxford Statistical Science Series. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Visual ComputingBonn-Rhein-Sieg University of Applied SciencesSankt AugustinGermany
  2. 2.Institute of Visual ComputingHochschule Bonn-Rhein SiegSankt AugustinGermany
  3. 3.Gokhale Method InstituteStanfordUSA

Personalised recommendations