Multiple Fabric Assessment: Focus on Method Versatility and Flexibility

  • Alessandro AraldiEmail author
  • Joan Perez
  • Giovanni Fusco
  • Takashi Fuse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10962)


Metropolitan regions are very complex spaces for geographical analysis, above all due to their strong heterogeneity at the intra-urban level. This paper presents the progresses made by Multiple Fabric Assessment (MFA), a method specifically conceived for describing urban fabrics from the pedestrian perspective. To sum up, standard spatial units are first defined (Proximity Bands) and specific indicators are calculated at this level. Then, patterns amongst space are identified and clustered. The application of MFA method to new case studies (Marseille, Osaka, Rio de Janeiro and Brussels) has brought to highlight several peculiarities related to data availability, intrinsic urban space characteristics and aim of application. This paper collects the experiences gathered from these new case studies, highlighting key aspects that academics and practitioners should deal with, when using MFA. Our results show a versatile and flexible method, able to be adapt itself to any case study if not limited by data availability.


Urban fabric Multiple Fabric Assessment Clustering Geoprocessing 



This research was carried out thanks to a research grant of the Nice Côte d’Azur Chamber of Commerce and Industry (CIFRE agreement with UMR ESPACE) as well as a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). This study was supported by Joint Research Program No. 774 at CSIS, UTokyo (Zmap TOWN II 2013/14 Shapefile Osaka prefecture, Digital Road Map Database extended version 2015).


  1. 1.
    Jacobs, J.: The Death and Life of Great American Cities. Random House, New York (1961)Google Scholar
  2. 2.
    Gehl, J.: Life Between Buildings: Using Public Space. Van Nostrand Reinhold, New York (1987)Google Scholar
  3. 3.
    Gehl, J.: Cities for People. Island Press, Washington, DC (2010)Google Scholar
  4. 4.
    Lynch, K.: The Image of the City. MIT Press, Cambridge (1960)Google Scholar
  5. 5.
    Whyte, W.H.: The Social Life of Small Urban Spaces (1980)Google Scholar
  6. 6.
    Farr, D.: Sustainable Urbanism: Urban Design with Nature. Wiley, Hoboken (2008)Google Scholar
  7. 7.
    Carmona, M.: Sustainable urban design-a possible agenda. In: Planning for a Sustainable Future, p. 165 (2001)Google Scholar
  8. 8.
    Talen, E., Koschinsky, J.: Compact, walkable, diverse neighborhoods: assessing effects on residents. Hous. Policy Debate 24(4), 717–750 (2014)CrossRefGoogle Scholar
  9. 9.
    National Association of City Transportation Officials: Urban Street Design Guide, NACTO Guidelines (2013)Google Scholar
  10. 10.
    National Association of City Transportation Officials: Transit Street Design Guide, NACTO Guidelines (2015)Google Scholar
  11. 11.
    National Association of City Transportation Officials: Global Street Design Guide, NACTO Guidelines (2017)Google Scholar
  12. 12.
    Psenner, A.: A smart researching and planning tool for the neuralgic urban zone: 3D-ZPA. In: REAL CORP 2014–PLAN IT SMART! Clever Solutions for Smart Cities. Proceedings of 19th International Conference on Urban Planning, Regional Development and Information Society, pp. 35–44 (2014)Google Scholar
  13. 13.
    Caniggia, G., Maffei, G.L.: Lettura dell’edilizia di base, vol. 215. Alinea Editrice, Firenze (2008)Google Scholar
  14. 14.
    Talen, E.: The geospatial dimension in urban design. J. Urban Des. 16(1), 127–149 (2011)CrossRefGoogle Scholar
  15. 15.
    Berghauser Pont, M.Y., Haupt, P.: Spacematrix, Space, Density and Urban Form. NAi Publishers, Rotterdam (2010)Google Scholar
  16. 16.
    Frankhauser, P.: La fractalité des structures urbaines. Villes, Anthropos, Paris (1994)Google Scholar
  17. 17.
    Thomas, I., et al.: Fractal dimension versus density of built-up surfaces in the periphery of Brussels. Pap. Reg. Sci. 86, 287–308 (2007)CrossRefGoogle Scholar
  18. 18.
    Gil, J., et al.: On the discovery of urban typologies: data mining the many dimensions of urban form. Urban Morphol. 16(1), 27 (2012)Google Scholar
  19. 19.
    Bernabé, A., et al.: Classification automatique des tissus urbains par la méthode des nuées dynamiques. 31e Rencontres AUGC, Cachan, France (2013)Google Scholar
  20. 20.
    Royall, R.A., Wortmann, T.: Finding the state space of urban regeneration: modeling gentrification as a probabilistic process using k-means clustering and Markov models. In: CUPUM 2015 Proceedings, Paper 275 (2015)Google Scholar
  21. 21.
    Hillier, B., Hanson, J.: The Social Logic of Space. Press Syndicate of the University of Cambridge, Cambridge (1984)CrossRefGoogle Scholar
  22. 22.
    Hillier, B.: Space is the Machine. Cambridge University Press, Cambridge (1998)Google Scholar
  23. 23.
    Porta, S., et al.: The network analysis of urban streets: a primal approach. Environ. Plan. B: Plan. Des. 33(5), 705–725 (2006)CrossRefGoogle Scholar
  24. 24.
    Sevtsuk, A.: Location and agglomeration: the distribution of retail and food businesses in dense urban environments. J. Plan. Educ. Res. 34(4), 374–393 (2014)CrossRefGoogle Scholar
  25. 25.
    Araldi, A., Fusco, G.: Urban form from the pedestrian point of view: spatial patterns on a street network. In: INPUT 2016, 14th–15th September 2016, Turin, Italy, pp. 32–37 (2016).
  26. 26.
    Araldi, A., Fusco, G.: Decomposing and recomposing urban fabric: the city from the pedestrian point of view. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 365–376. Springer, Cham (2017). Scholar
  27. 27.
    Fusco, G., Araldi, A.: The nine forms of the French Riviera: classifying urban fabrics from the pedestrian perspective. In: ISUF 2017 XXIV International Conference on City and Territory in the Globalization Age, Proceedings (2017). (in Press)Google Scholar
  28. 28.
    Fusco, G., Araldi, A.: Significant patterns in urban form: spatial analysis of morphological indicators. Rev. Int. Geomat. 27(4), 455–479 (2017)CrossRefGoogle Scholar
  29. 29.
    Yamada, I., Thill, J.C.: Local indicators of network-constrained clusters in spatial patterns represented by a link attribute. Ann. Assoc. Am. Geogr. 100(2), 269–285 (2010)CrossRefGoogle Scholar
  30. 30.
    Anselin, L.: Local indicators of spatial association. Geogr. Anal. 27(2), 93–115 (1995)CrossRefGoogle Scholar
  31. 31.
    Caniggia, G., Maffei, G.: Lettura dell’Edilizia di Base. Alinea, Firenze (1979)Google Scholar
  32. 32.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar
  33. 33.
    Ewing, R., Handy, S.: Measuring the unmeasurable: urban design qualities related to walkability. J. Urban Des. 14(1), 65–84 (2009)CrossRefGoogle Scholar
  34. 34.
    Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)Google Scholar
  35. 35.
    Lévy, A.: Formes urbaines et significations: revisiter la morphologie urbaine. Espaces et sociétés, no. 3, pp. 25–48 (2005)Google Scholar
  36. 36.
    Benedikt, M.L.: To take hold of space: isovists and isovist fields. Environ. Plan. B: Plan. Des. 6(1), 47–65 (1979)CrossRefGoogle Scholar
  37. 37.
    Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  38. 38.
    Perez, J., Fusco, G., Araldi, A., Fuse, T.: Building typologies for urban fabric classification: Osaka and Marseille case studies. In: International Conference on Spatial Analysis and Modeling, 8th–9th September 2018, Tokyo, p. 13 (2018, submitted)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Araldi
    • 1
    Email author
  • Joan Perez
    • 2
  • Giovanni Fusco
    • 1
  • Takashi Fuse
    • 2
  1. 1.Université Côte-d’Azur, CNRS, ESPACENiceFrance
  2. 2.Regional Planning and Information LaboratoryThe University of TokyoTokyoJapan

Personalised recommendations