Skip to main content

Weighting Lower and Upper Ranks Simultaneously Through Rank-Order Correlation Coefficients

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10961)

Abstract

Two new weighted correlation coefficients, that allow to give more weight to the lower and upper ranks simultaneously, are proposed. These indexes were obtained computing the Pearson correlation coefficient with a modified Klotz and modified Mood scores. Under the null hypothesis of independence of the two sets of ranks, the asymptotic distribution of these new coefficients was derived. The exact and approximate quantiles were provided. To illustrate the value of these measures an example, that could mimic several biometrical concerns, is presented. A Monte Carlo simulation study was carried out to compare the performance of these new coefficients with other weighted coefficient, the van der Waerden correlation coefficient, and with two non-weighted indexes, the Spearman and Kendall correlation coefficients. The results show that, if the aim of the study is the detection of correlation or agreement between two sets of ranks, putting emphasis on both lower and upper ranks simultaneously, the use of van der Waerden, signed Klotz and signed Mood rank-order correlation coefficients should be privileged, since they have more power to detect this type of agreement, in particular when the concordance was focused on a lower proportion of extreme ranks. The preference for one of the coefficients should take into account the weight one wants to assign to the extreme ranks.

Keywords

  • Monte Carlo simulation
  • Rank-order correlation
  • Weighted concordance
  • Signed Klotz scores
  • Signed Mood scores
  • van der Waerden scores

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95165-2_23
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95165-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Blest, D.C.: Rank correlation - an alternative measure. Aust. N. Z. J. Stat. 42, 101–111 (2000)

    CrossRef  MathSciNet  Google Scholar 

  2. Boudt, K., Cornelissen, J., Croux, C.: The Gaussian rank correlation estimator: robustness properties. Stat. Comput. 22(2), 471–483 (2012)

    CrossRef  MathSciNet  Google Scholar 

  3. Chasalow, S.: combinat: combinatorics utilities. R package version 0.0-8. (2012). http://CRAN.R-project.org/package=combinat

  4. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)

    CrossRef  Google Scholar 

  5. Genest, C., Plante, J.F.: On Blest’s measure of rank correlation. Can. J. Stat. 31, 35–52 (2003)

    CrossRef  MathSciNet  Google Scholar 

  6. Gould, P., White, R.: Mental Maps, 2nd edn. Routledge, London (1986)

    Google Scholar 

  7. Hájek, J., Šidák, Z.: Theory of Rank Tests. Academic Press, New York (1972)

    MATH  Google Scholar 

  8. Iman, R.L., Conover, W.J.: A measure of top-down correlation. Technometrics 29, 351–357 (1987)

    MATH  Google Scholar 

  9. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)

    CrossRef  Google Scholar 

  10. Klotz, J.: Nonparametric tests for scale. Ann. Math. Stat. 33, 498–512 (1962)

    CrossRef  MathSciNet  Google Scholar 

  11. Legendre, P.: Species associations: the Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10, 226–245 (2005)

    CrossRef  Google Scholar 

  12. Maturi, T., Abdelfattah, E.: A new weighted rank correlation. J. Math. Stat. 4, 226–230 (2008)

    CrossRef  MathSciNet  Google Scholar 

  13. Mood, A.M.: On the asymptotic efficiency of certain nonparametric two-sample tests. Ann. Math. Stat. 25, 514–522 (1954)

    CrossRef  MathSciNet  Google Scholar 

  14. Pinto da Costa, J., Soares, C.: A weighted rank measure of correlation. Aust. N. Z. J. Stat. 47, 515–529 (2005)

    CrossRef  MathSciNet  Google Scholar 

  15. Pinto da Costa, J., Alonso, H., Roque, L.: A weighted principal component analysis and its application to gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(1), 246–252 (2011)

    CrossRef  Google Scholar 

  16. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.r-project.org/

  17. S original, from StatLib and by Rob Tibshirani. R port by Friedrich Leisch: bootstrap: Functions for the Book “An Introduction to the Bootstrap”. R package version 2015.2 (2015). http://CRAN.R-project.org/package=bootstrap

  18. Savage, I.R.: Contributions to the theory of rank order statistics – the two-sample case. Ann. Math. Stat. 27, 590–615 (1956)

    CrossRef  MathSciNet  Google Scholar 

  19. Shieh, G.S.: A weighted Kendall’s tau statistic. Stat. Prob. Lett. 39, 17–24 (1998)

    CrossRef  MathSciNet  Google Scholar 

  20. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904)

    CrossRef  Google Scholar 

  21. Sprent, P., Smeeton, N.C.: Applied Nonparametric Statistical Methods, 4th edn. Chapman and Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  22. Teles, J.: Concordance coefficients to measure the agreement among several sets of ranks. J. Appl. Stat. 39, 1749–1764 (2012)

    CrossRef  MathSciNet  Google Scholar 

  23. Tóth, O., Calatzis, A., Penz, S., Losonczy, H., Siess, W.: Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thrombosis Haemost. 96, 781–788 (2006)

    CrossRef  Google Scholar 

  24. van der Waerden, B.L.: Order tests for the two-sample problem and their power. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, vol. 55, pp. 453–458 (1952)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research was partially sponsored by national funds through the Fundação Nacional para a Ciência e Tecnologia, Portugal – FCT, under the projects PEst-OE/SAU/UI0447/2011 and UID/MAT/00006/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Aleixo .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A1 Mean and Variance of \(R_{_S}\)

Indeed, under the null hypothesis of independence of the two sets of rankings (\(\left( R_{11}, R_{12}, \ldots , R_{1n}\right) \) and \(\left( R_{21}, R_{22}, \ldots , R_{2n}\right) \)), the expected value of \(R_{_S}\) is zero:

$$\begin{aligned} \mathbb {E}\left( R_{_S}\right) \,{=}\, \mathbb {E}\left( \frac{1}{C_{_S}}\textstyle \sum _{j=1}^{n} S_{1j}S_{2j}\right) \! \,{=}\, \frac{1}{C_{_S}} \textstyle \sum _{j=1}^{n} \mathbb {E}\left( S_{1j}S_{2j}\right) \! \,{=}\, \frac{n}{C_{_S}}\, \mathbb {E}\left( S_{1j}\right) \mathbb {E}\left( S_{2j}\right) \! \,{=}\, 0 . \end{aligned}$$

In fact, the expected values of each one of the variables \(S_{ij}\), with \(i=1, 2\) and \(j=1,\ldots ,n\), is zero, since it is an expected value of a function of a discrete uniform variable in n points, \(X_{ij}\), with probability function \(f_{X_{ij}}(x) = \frac{1}{n} \), i.e.,

$$\begin{aligned} \mathbb {E}\left( S_{ij}\right) = \mathbb {E}\left( g \left( X_{ij}\right) \right) = \textstyle \sum _{j=1}^n g(x) f_{X_{ij}}(x)= \frac{1}{n} \textstyle \sum _{j=1}^n s_{ij} = 0 . \end{aligned}$$

Note that for the van der Waerden and for the signed Klotz correlation coefficients one has \(X_{ij} = \frac{R_{ij}}{n+1}\), but while \(g\left( X_{ij}\right) = \varPhi ^{-1}\left( X_{ij}\right) \) in van der Waerden case, \(g\left( X_{ij}\right) = sign\left( R_{ij} - \frac{n+1}{2}\right) \left( \varPhi ^{-1}\left( X_{ij}\right) \right) ^2\) for the signed Klotz. In the case of signed Mood correlation coefficient, \(X_{ij} = R_{ij} - \frac{n+1}{2}\) and \(g\left( X_{ij}\right) = sign\left( X_{ij}\right) X_{ij}^2 \).

In what concerns the variance of \(R_{_S}\), under the null hypothesis of independence between the two sets of rankings, one has:

$$\begin{aligned} Var\left( R_{_S}\right)= & {} Var\left( \frac{1}{C_{_S}}\textstyle \sum _{j=1}^{n} S_{1j} S_{2j}\right) = \frac{1}{C_{_S}^2} Var\left( \textstyle \sum _{j=1}^{n} S_{1j}S_{2j}\right) . \end{aligned}$$
(1)

As a matter of fact,

$$\begin{aligned}&Var \left( \textstyle \sum _{j=1}^{n} S_{1j} S_{2j}\right) \\= & {} n Var\left( S_{1j}\right) Var\left( S_{2j}\right) + n(n-1) Cov\left( S_{1j},S_{1k}\right) Cov\left( S_{2j},S_{2k}\right) \\= & {} n \left( Var\left( S_{1j}\right) \right) ^2 + n(n-1) \left( Cov\left( S_{1j},S_{1k}\right) \right) ^2 . \end{aligned}$$

Attending to the fact that

$$\begin{aligned} Var\left( S_{1j}\right) = \mathbb {E}\left( S_{1j}^2\right) - \mathbb {E}^2\left( S_{1j}\right) = \mathbb {E}\left( S_{1j}^2\right) = \textstyle \sum _{j=1}^n \left( g(x)\right) ^2 f_{X_{ij}}(x) = \frac{C_{_S}}{n} \end{aligned}$$

and, considering the joint probability function of the random sample \(\left( X_{1j},X_{1k}\right) \), \(f_{_{\left( X_{1j},X_{1k}\right) }}\left( x_{1j},x_{1k}\right) = \frac{1}{n(n-1)}\), for \(j \ne k\) and \(j, k = 1, \ldots ,n\), then

$$\begin{aligned} Cov\left( S_{1j},S_{1k}\right)= & {} \! \mathbb {E}\left( S_{1j}S_{1k}\right) \!- \!\mathbb {E}\left( S_{1j}\right) \mathbb {E}\left( S_{1k}\right) \! = \!\mathbb {E}\left( S_{1j}S_{1k}\right) = \mathbb {E}\left( g\left( X_{1j}\right) g\left( X_{1k}\right) \right) \\= & {} \! \textstyle \sum _{j \ne k} g\left( x_{1j}\right) g\left( x_{1k}\right) f_{_{\left( X_{1j},X_{1k}\right) }}\left( x_{1j},x_{1k}\right) \!=\!\frac{1}{n(n-1)}\textstyle \sum _{j \ne k} s_{1j} s_{1k}\\= & {} \frac{1}{n(n-1)}\left[ \left( \textstyle \sum _{j=1}^n s_{1j}\right) ^2 - \textstyle \sum _{j=1}^n s_{1j}^2\right] = -\frac{C_{_S}}{n(n-1)} . \end{aligned}$$

Therefore

$$\begin{aligned} Var\left( \textstyle \sum _{j=1}^{n} S_{1j} S_{2j}\right)= & {} n \left( Var\left( S_{1j}\right) \right) ^2 + n(n-1) \left( Cov\left( S_{1j},S_{1k}\right) \right) ^2\nonumber \\= & {} n \left( \frac{C_{_S}}{n}\right) ^2 + n(n-1) \left( -\frac{C_{_S}}{n(n-1)}\right) ^2 = \frac{C^2_{_S}}{n-1} . \end{aligned}$$
(2)

Finally, from Eqs. (1) and (2), it follows that \(Var\left( R_{_S}\right) = \frac{1}{n-1}\).

1.2 A2 Tables

Table 3. Exact quantiles of \(R_{_W}\), \(R_{_{SK}}\), and \(R_{_{SM}}\)
Table 4. Approximate quantiles of \(R_{_W}\), \(R_{_{SK}}\), and \(R_{_{SM}}\).
Table 5. Mean (standard deviation) of Spearman, Kendall’s Tau, van der Waerden, signed Klotz, and signed Mood correlation coefficient estimates, for two scenarios: on the left, the concordance was targeted for a higher proportion (\(p=0.25\)) of extreme ranks, and on the right, the concordance was focused on a lower proportion (\(p=0.1\)) of extreme ranks.
Table 6. Powers (\(\%\)) of Spearman, Kendall’s Tau, van der Waerden, signed Klotz, and signed Mood correlation coefficients, for two scenarios: on the left, the concordance was targeted for a higher proportion (\(p=0.25\)) of extreme ranks, and on the right, the concordance was focused on a lower proportion (\(p=0.1\)) of extreme ranks.

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aleixo, S.M., Teles, J. (2018). Weighting Lower and Upper Ranks Simultaneously Through Rank-Order Correlation Coefficients. In: , et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)