Skip to main content

Band Mixing Effects in InAs/GaAs Quantum Rings and in MoS\(_2\) Quantum Dots Ring-Like Behaving

  • Chapter
  • First Online:
Book cover Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

  • 1134 Accesses

Abstract

The physics of semiconductor quantum rings near the band edge is often well described considering decoupled bands. There are however instances where band coupling leads to relevant changes in the electronic structure and derived properties. In this chapter we analyze two such cases. First, we focus on the heavy hole-light hole band mixing in self-assembled InAs/GaAs quantum rings, which is important for current endeavour to develop quantum information science using the spin of holes. In InAs/GaAs quantum dots, the hole ground state is known to be mainly formed by the heavy hole subband. However, there is a finite spin-orbit coupling with the light-hole subband which is critical in determining the hole spin properties. Based on k\(\cdot \)p theory, in this chapter we study the influence of hole subband mixing in quantum rings. It is shown that the inner cavity of the ring enhances the light hole component of the ground state. As the quasi-1D limit is approached, the light-hole character becomes comparable to that of the heavy hole. Strain reduces the coupling, but it is still larger than in quantum dots. Second, we study the electronic structure of monolayer MoS\(_2\) quantum dots subject to a magnetic field. Here, the coupling between conduction and valence band gives rise to mid-gap topological states which localize near the dot edge. These edge states are analogous to those of 1D quantum rings. We show they present a large, Zeeman-like, linear splitting with the magnetic field, anticross with the delocalized Fock-Darwin-like states of the dot, give rise to Aharonov-Bohm-like oscillations of the conduction (valence) band low-lying states in the K (K\(^{\prime }\)) valley, and modify the strong-field Landau levels limit form of the energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In graphene systems one can associate an index to each of the inequivalent valleys. Then, the Chern number can be calculated as the sum of these indexes. It is found that while the individual Chern number per inequivalent valley does not vanish, the sum is zero, so that the system is topologically trivial. However, the non-vanishing valley index allows the system to sustain edge states. Such behavior is related to graphene’s marginal topological character. In a similar sense, MoS\(_2\) is marginal as well. The marginality implies that a small perturbation in the Hamiltonian (e.g. mass term) can have a big effect on the presence or absence of the gapless modes.

References

  1. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)

    Book  Google Scholar 

  2. M. Dyakonov (ed.), Spin Physics in Semiconductors (Springer, Berlin, 2010)

    Google Scholar 

  3. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  4. L. Jacak, P. Hawrylak, A. Wójs, Quantum Dots (Springer, Berlin, 1998)

    Book  Google Scholar 

  5. D. Brunner, B.D. Gerardot, P.A. Dalgarno, G. Wüst, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Science 325, 70 (2009)

    Article  ADS  Google Scholar 

  6. A. Greilich, S.G. Carter, D. Kim, A.S. Bracker, D. Gammon, Nat. Photonics 5, 702 (2011)

    Article  ADS  Google Scholar 

  7. T.M. Godden, J.H. Quilter, A.J. Ramsay, Y. Wu, P. Brereton, S.J. Boyle, I.J. Luxmoore, J. Puebla-Nunez, A.M. Fox, M.S. Skolnick, Phys. Rev. Lett. 108, 017402 (2012)

    Article  ADS  Google Scholar 

  8. K. De Greve, P.L. McMahon, D. Press, T.D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, Y. Yamamoto, Nat. Phys. 7, 827 (2011)

    Article  Google Scholar 

  9. K. Müller, A. Bechtold, C. Ruppert, C. Hautmann, J.S. Wildmann, T. Kaldewey, M. Bichler, H.J. Krenner, G. Abstreiter, M. Betz, J.J. Finley, Phys. Rev. B 85, 241306(R) (2012)

    Article  ADS  Google Scholar 

  10. E.A. Stinaff, M. Scheibner, A.S. Bracker, I.V. Ponomarev, V.L. Korenev, M.E. Ware, M.F. Doty, T.L. Reinecke, D. Gammon, Science 311, 636 (2006)

    Article  ADS  Google Scholar 

  11. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J.J. Finley, D.V. Bulaev, D. Loss, Phys. Rev. B 76, 241306(R) (2007)

    Article  ADS  Google Scholar 

  12. B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451, 441 (2008)

    Article  ADS  Google Scholar 

  13. J. Fischer, W.A. Coish, D.V. Bulaev, D. Loss, Phys. Rev. B 78, 155329 (2008)

    Article  ADS  Google Scholar 

  14. B. Eble, C. Testelin, P. Desfonds, F. Bernardot, A. Balocchi, T. Amand, A. Miard, A. Lemaitre, X. Marie, M. Chamarro, Phys. Rev. Lett. 102, 146601 (2009)

    Article  ADS  Google Scholar 

  15. P. Fallahi, S.T. Yilmaz, A. Imamoglu, Phys. Rev. Lett. 105, 257402 (2010)

    Article  ADS  Google Scholar 

  16. E.A. Chekhovich, A.B. Krysa, M.S. Skolnick, A.I. Tartakovskii, Phys. Rev. Lett. 106, 027402 (2011)

    Article  ADS  Google Scholar 

  17. C.-Y. Lu, Y. Zhao, A.N. Vamivakas, C. Matthiesen, S. Fält, A. Badolato, M. Atatüre, Phys. Rev. B 81, 035332 (2010)

    Article  ADS  Google Scholar 

  18. M.F. Doty, J.I. Climente, A. Greilich, M. Yakes, A.S. Bracker, D. Gammon, Phys. Rev. B 81, 035308 (2010)

    Article  ADS  Google Scholar 

  19. J.H. Blokland, F.J.P. Wijnen, P.C.M. Christiansen, U. Zeitler, J.C. Maan, Phys. Rev. B 75, 23305 (2007)

    Article  Google Scholar 

  20. J.I. Climente, J. Planelles, M. Pi, F. Malet, Phys. Rev. B 72, 233305 (2005)

    Article  ADS  Google Scholar 

  21. W. Jaskólski, M. Zielinski, G.W. Bryant, Phys. Rev. B 74, 195339 (2006)

    Article  ADS  Google Scholar 

  22. G. Bester, A. Zunger, Phys. Rev. B 72, 165334 (2005)

    Article  ADS  Google Scholar 

  23. M.F. Doty, J.I. Climente, M. Korkusinski, M. Scheibner, A.S. Bracker, P. Hawrylak, D. Gammon, Phys. Rev. Lett. 102, 047401 (2009)

    Article  ADS  Google Scholar 

  24. J.I. Climente, M. Korkusinski, G. Goldoni, P. Hawrylak, Phys. Rev. B 78, 115323 (2008)

    Article  ADS  Google Scholar 

  25. T. Chwiej, B. Szafran, Phys. Rev. B 81, 075302 (2010)

    Article  ADS  Google Scholar 

  26. A.I. Yakimov, A.A. Bloshkin, A.V. Dvurechenskii, Semicond. Sci. Technol. 24, 095002 (2009)

    Article  ADS  Google Scholar 

  27. G. Katsaros, V.N. Golovach, P. Spathis, N. Ares, M. Stoffel, F. Fournel, O.G. Schmidt, L.I. Glazman, S. De Franceschi, Phys. Rev. Lett. 107, 246601 (2011)

    Article  ADS  Google Scholar 

  28. F. Suarez, D. Granados, Dotor M. Luisa, J.M. Garcia, Nanotechnology 15, S126 (2004)

    Article  ADS  Google Scholar 

  29. J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, Z. Zhou, H. Li, J. Lee, E.S. Kim, Y.I. Mazur, G.J. Salamo, Appl. Phys. Lett. 101, 043904 (2012)

    Article  ADS  Google Scholar 

  30. O. Tangmettajittakul, P. Boonpeng, P. Changmoung, S. Thainoi, S. Rattanathammaphan, S. Panyakeow, in Photovoltaics Specialists Conference 37th IEEE, vol. 002665 (2011)

    Google Scholar 

  31. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Lorke, J. Luyken, A.O. Govorov, J.P. Kotthaus, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  33. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, A. Forchel, Phys. Rev. Lett. 90, 186801 (2003)

    Article  ADS  Google Scholar 

  34. N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. Garcia, P. Offermans, U. Zeitler, Christianen, Maan J. C., Devreese J. T., Koenraad P. M. Phys. Rev. Lett. 99, 146808 (2007)

    Article  ADS  Google Scholar 

  35. Ding F., Li B., Akopian N., Perinetti U., Chen Y. H., Peeters F. M., Rastelli A., Zwiller V., and Schmidt O. G., J. Nanoelectron. and Optoelectron. 6, 51 (2011); Ding F., Akopian N., Li B., Perinetti U., Govorov A., Peeters F. M., Bof Bufon C. C., Deneke C., Chen Y. H., Rastelli A., Schmidt O. G., and Zwiller V., Phys. Rev. B 82, 075309 (2010)

    Google Scholar 

  36. J.I. Climente, J. Planelles, W. Jaskolski, Phys. Rev. B 68, 075307 (2003)

    Article  ADS  Google Scholar 

  37. L.G.G.V. Dias da Silva, S.E. Ulloa, A.O. Govorov, Phys. Rev. B 70, 155318 (2004)

    Article  ADS  Google Scholar 

  38. V.M. Fomin, V.N. Gladilin, S.N. Klimin, J.T. Devreese, Phys. Rev. B 76, 235320 (2007)

    Article  ADS  Google Scholar 

  39. N. Cukaric, M. Tadic, F.M. Peeters, Superlattice Microst. 48, 491 (2010)

    Article  ADS  Google Scholar 

  40. A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309(R) (2002)

    Article  ADS  Google Scholar 

  41. B. Li, F.M. Peeters, Phys. Rev. B 83, 115448 (2011)

    Article  ADS  Google Scholar 

  42. E. Waltersson, E. Lindroth, I. Pilskog, J.P. Hansen, Phys. Rev. B 79, 115318 (2009)

    Article  ADS  Google Scholar 

  43. M. Szopa, E. Zipper, J. Phys.: Conf. Series 213, 012006 (2006)

    Google Scholar 

  44. C. Segarra, J.I. Climente, J. Planelles, J. Phys.: Condens. Matter 24, 115801 (2012)

    ADS  Google Scholar 

  45. J. Planelles, F. Rajadell, J.I. Climente, J. Phys. Chem. C 114, 8337 (2010)

    Article  Google Scholar 

  46. J.I. Climente, J. Planelles, J. Nanoelectron. Optoelectron. 6, 81 (2011)

    Article  Google Scholar 

  47. Burt M. G., J. Phys.: Condens. Matter 4, 6651 (1992); ibid. 11, R53 (1999)

    Google Scholar 

  48. B.A. Foreman, Phys. Rev. B 48, 4964 (1993)

    Article  ADS  Google Scholar 

  49. P.C. Sercel, K.J. Vahala, Phys. Rev. B 42, 3690 (1990)

    Article  ADS  Google Scholar 

  50. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955); J.M. Luttinger, ibid.102, 1030 (1956)

    Google Scholar 

  51. L. Voon, M. Willatzen, The k\(\cdot \)p Method: Electronic Properties of Semiconductors (Springer, Berlin, 2009)

    Google Scholar 

  52. F. Rajadell, M. Royo, J. Planelles, J. Appl. Phys. 111, 014303 (2012)

    Article  ADS  Google Scholar 

  53. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. Garcia, Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  54. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  55. M. Tadic, F.M. Peeters, K.L. Janssens, M. Korkusiński, P. Hawrylak, J. Appl. Phys. 92, 5819 (2002)

    Article  ADS  Google Scholar 

  56. J.A. Barker, R.J. Warburton, E.P. O’Reilly, Phys. Rev. B 69, 035327 (2004)

    Article  ADS  Google Scholar 

  57. R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002)

    Article  ADS  Google Scholar 

  58. C. Pryor, Phys. Rev. B 57, 7190 (1998)

    Article  ADS  Google Scholar 

  59. W. Sheng, J.P. Leburton, Phys. Stat. Sol. 237, 394 (2003)

    Article  ADS  Google Scholar 

  60. M. Tadic, N. Cukaric, V. Asoski, F.M. Peeters, Phys. Rev. B 84, 125307 (2011)

    Article  ADS  Google Scholar 

  61. C.Y.P. Chao, S.L. Chuang, Phys. Rev. B 46, 4110 (1992)

    Article  ADS  Google Scholar 

  62. N.A.J.M. Kleemans, J.H. Blokland, A.G. Taboada, H.C.M. van Genuchten, M. Bozkurt, V.M. Fomin, V.N. Gladilin, D. Granados, M.J.C. Christianen, J.T. Devreese, P.M. Koenraad, Phys. Rev. B 80, 155318 (2009)

    Article  ADS  Google Scholar 

  63. C. Pryor, Phys. Rev. Lett. 80, 3579 (1998)

    Article  ADS  Google Scholar 

  64. S.E. Economou, J.I. Climente, A. Badolato, A.S. Bracker, D. Gammon, M.F. Doty, Phys. Rev. B 86, 085319 (2012)

    Article  ADS  Google Scholar 

  65. T. Flissikowski, I.A. Akimov, A. Hundt, F. Henneberger, Phys. Rev. B 68, 0161309(R) (2003)

    Article  ADS  Google Scholar 

  66. M. Koperski, M.R. Molas, A. Arora, K. Nogajewski, A.O. Slobodeniuk, C. Faugeras, M. Potemski, Nanophotonics 6, 1289 (2017)

    Article  Google Scholar 

  67. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.Y. Veuillen, J. Marcus, P. Kossacki, M. Potemski, Nat. Nanotechnol. 10, 503 (2015)

    Article  ADS  Google Scholar 

  68. A. Srivastava, M. Slider, A.V. Allain, D.S. Lembke, A. Kis, A. Imamoglu, Nat. Nanotechnol. 10, 491 (2015)

    Article  ADS  Google Scholar 

  69. Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen, Y.J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, Nat. Nanotechnol. 10, 497 (2015)

    Article  ADS  Google Scholar 

  70. C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Nat. Nanotechnol. 10, 507 (2015)

    Article  ADS  Google Scholar 

  71. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G.A. Steele, A. Castellanos-Gomez, H.S.J. van der Zant, S.M. de Vasconcellos, R. Bratschitsch, Optical 2, 347 (2015)

    Google Scholar 

  72. S. Kumar, A. Kaczmarczyk, B.D. Gerardot, Nano Lett. 15, 7567 (2015)

    Article  ADS  Google Scholar 

  73. A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne, X. Marie, B.D. Gerardot, B. Urbaszek, Appl. Phys. Lett. 108, 142101 (2016)

    Article  ADS  Google Scholar 

  74. G. Wei, D.A. Czaplewski, E.J. Lenferink, T.K. Stanev, I.W. Jung, N.P. Stern, Sci. Rep. 7, 3324 (2017)

    Article  ADS  Google Scholar 

  75. L. Lin, Y. Xu, S. Zhang, I.M. Ross, A.C. Ong, D.A. Allwood, ACS Nano 7, 8214 (2013)

    Article  Google Scholar 

  76. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Nat. Natotechnol. 11, 37 (2016)

    Article  ADS  Google Scholar 

  77. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, J. Wu, Sci. Rep. 3, 2657 (2013)

    Article  ADS  Google Scholar 

  78. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Nano Lett. 13, 2615 (2013)

    Article  ADS  Google Scholar 

  79. A. Kormanyós, V. Zóyomi, N.D. Drummond, G. Burkard, Phys. Rev. X 4, 011034 (2014)

    Google Scholar 

  80. M. Brooks, G. Burkard, Phys. Rev. B 95, 245411 (2017)

    Article  ADS  Google Scholar 

  81. A.C. Dias, J. Fu, L. Villegas-Lelovsky, F. Qu, J. Phys.: Condens. Matter 28, 375803 (2016)

    Google Scholar 

  82. F. Qu, A.C. Dias, J. Fu, L. Villegas-Lelovsky, D.L. Azevedo, Sci. Rep. 7, 41044 (2017)

    Article  ADS  Google Scholar 

  83. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Norskov, S. Helveg, F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001)

    Article  ADS  Google Scholar 

  84. H. Pan, Y.W. Zhang, J. Mater. Chem. 22, 7280 (2012)

    Article  Google Scholar 

  85. E. Erdogan, I.H. Popov, A.N. Enyashin, G. Seifert, Eur. Phys. J. B 85, 33 (2012)

    Article  ADS  Google Scholar 

  86. S. Pavlovic, F.M. Peeters, Phys. Rev. B 91, 155410 (2015)

    Article  ADS  Google Scholar 

  87. D. Davelou, G. Kopidakis, G. Kioseoglou, I.N. Remediakis, Solid State Commun. 192, 42 (2014)

    Article  ADS  Google Scholar 

  88. C.G. Peterfalvi, A. Kormanyos, G. Burkard, Phys. Rev. B 92, 245443 (2015)

    Article  ADS  Google Scholar 

  89. C. Segarra, J. Planelles, S.E. Ulloa, Phys. Rev. B 93, 085312 (2016)

    Article  ADS  Google Scholar 

  90. A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Z’olyomi, N.D. Drummond and V. Fal’ko, 2D Mater. 2, 022001 (2015)

    Google Scholar 

  91. E. Ridolfi, L.R.F. Lima, E.R. Mucciolo, C.H. Lewenkopf, Phys. Rev. B 95, 035430 (2017)

    Article  ADS  Google Scholar 

  92. A. Kormanyos, V. Z’olyomi, N.D. Drummond, P. Rakyta, G. Burkard, V.I. Fal’ko, Phys. Rev. B 88, 045416 (2013)

    Google Scholar 

Download references

Acknowledgements

Support from MINECO project CTQ2017-83781-P and UJI project B2017-59 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Planelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Segarra, C., Planelles, J., Climente, J.I. (2018). Band Mixing Effects in InAs/GaAs Quantum Rings and in MoS\(_2\) Quantum Dots Ring-Like Behaving. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-95159-1_17

Download citation

Publish with us

Policies and ethics