Skip to main content

Advanced Techniques in Diagnostic Parasitology

  • 1428 Accesses

Abstract

Parasites are a significant source of morbidity and mortality worldwide, infecting humans in nearly all geographic regions. While parasite diagnostics have traditionally relied on conventional morphology- and serology-based methods, recent advances in digital image acquisition and analytics, molecular amplification and sequencing methods, and proteomics have revolutionized clinical parasitology. Parasitic infections for which advanced techniques are now routinely used include malaria, toxoplasmosis, babesiosis, leishmaniasis, trichomoniasis, and gastrointestinal infections. The availability of commercially available tests has facilitated adoption in the diagnostic laboratory. This chapter will discuss the technologies that hold significant promise for routine diagnostic use.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95111-9_8
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95111-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. DPDx – Laboratory Identification of Parasitic Diseases of Public Health Concern. 2018. 2/20/2018, at https://www.cdc.gov/dpdx/.

  2. Garcia LS. Diagnostic medical parasitology. 5th ed. Washington, DC: ASM Press; 2007.

    Google Scholar 

  3. Parasites – Neglected Parasitic Infections (NPIs). 2017. 2/20/2018, at http://www.cdc.gov/parasites/npi/.

  4. Neglected tropical diseases. 2018. 2/20/2018, at http://www.who.int/neglected_diseases/en/.

  5. Malaria. 2017. 2/21/2018, at http://www.who.int/mediacentre/factsheets/fs094/en/.

  6. National Notifiable Diseases Surveillance System (NNDSS). 2017. 2/21/2018, at https://wwwn.cdc.gov/nndss/data-and-statistics.html.

  7. Mathison BA, Pritt BS. Update on malaria diagnostics and test utilization. J Clin Microbiol. 2017;

    Google Scholar 

  8. Saeed MA, Jabbar A. “Smart diagnosis” of parasitic diseases by use of smartphones. J Clin Microbiol. 2018;56

    Google Scholar 

  9. Cybulski JS, Clements J, Prakash M. Foldscope: origami-based paper microscope. PLoS One. 2014;9:e98781.

    CrossRef  Google Scholar 

  10. Ephraim RK, Duah E, Cybulski JS, et al. Diagnosis of Schistosoma haematobium infection with a mobile phone-mounted Foldscope and a reversed-lens CellScope in Ghana. Am J Trop Med Hyg. 2015;92:1253–6.

    CrossRef  Google Scholar 

  11. Coulibaly JT, Ouattara M, D’Ambrosio MV, et al. Accuracy of mobile phone and handheld light microscopy for the diagnosis of schistosomiasis and intestinal Protozoa infections in cote d’Ivoire. PLoS Negl Trop Dis. 2016;10:e0004768.

    CrossRef  Google Scholar 

  12. Bogoch II, Coulibaly JT, Andrews JR, et al. Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology. 2014;141:1811–8.

    CrossRef  Google Scholar 

  13. D’Ambrosio MV, Bakalar M, Bennuru S, et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med. 2015;7:286re4.

    CrossRef  Google Scholar 

  14. Kamgno J, Pion SD, Chesnais CB, et al. A test-and-not-treat strategy for onchocerciasis in Loa loa-endemic areas. N Engl J Med. 2017;377:2044–52.

    CrossRef  Google Scholar 

  15. Stemple CC, Angus SV, Park TS, Yoon JY. Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood. J Lab Autom. 2014;19:35–41.

    CAS  CrossRef  Google Scholar 

  16. Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS One. 2012;7:e42222.

    CAS  CrossRef  Google Scholar 

  17. Eshel Y, Houri-Yafin A, Benkuzari H, et al. Evaluation of the Parasight platform for malaria diagnosis. J Clin Microbiol. 2017;55:768–75.

    CrossRef  Google Scholar 

  18. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Transl Res. 2018;194:36–55.

    CrossRef  Google Scholar 

  19. Das DK, Mukherjee R, Chakraborty C. Computational microscopic imaging for malaria parasite detection: a systematic review. J Microsc. 2015;260:1–19.

    CAS  CrossRef  Google Scholar 

  20. Tek FB, Dempster AG, Kale I. Computer vision for microscopy diagnosis of malaria. Malar J. 2009;8:153.

    CrossRef  Google Scholar 

  21. Holmstrom O, Linder N, Ngasala B, et al. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium. Glob Health Action. 2017;10:1337325.

    CrossRef  Google Scholar 

  22. Slusarewicz P, Pagano S, Mills C, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46:485–93.

    CrossRef  Google Scholar 

  23. Scare JA, Slusarewicz P, Noel ML, Wielgus KM, Nielsen MK. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods. Vet Parasitol. 2017;247:85–92.

    CAS  CrossRef  Google Scholar 

  24. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6:582–8.

    CAS  CrossRef  Google Scholar 

  25. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15:66–78.

    CAS  CrossRef  Google Scholar 

  26. Vasoo S, Pritt BS. Molecular diagnostics and parasitic disease. Clin Lab Med. 2013;33:461–503.

    CrossRef  Google Scholar 

  27. Verweij JJ, Stensvold CR. Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin Microbiol Rev. 2014;27:371–418.

    CrossRef  Google Scholar 

  28. Ryan U, Paparini A, Oskam C. New technologies for detection of enteric parasites. Trends Parasitol. 2017;33:532–46.

    CAS  CrossRef  Google Scholar 

  29. Yansouni CP, Merckx J, Libman MD, Ndao M. Recent advances in clinical parasitology diagnostics. Curr Infect Dis Rep. 2014;16:434.

    CrossRef  Google Scholar 

  30. Ramanan P, Bryson AL, Binnicker MJ, Pritt BS, Patel R. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev. 2018;31

    Google Scholar 

  31. Baron EJ, Miller JM, Weinstein MP, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis. 2013;57:e22–e121.

    CrossRef  Google Scholar 

  32. Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.

    CrossRef  Google Scholar 

  33. FilmArray Gastrointestinal Panel. 2018. 2/25/2018, at http://www.biofiredx.com/media/InfoSheet-FilmArray-GI-Panel-0234.pdf.

  34. Ryan R, Krause PJ, Radolf J, et al. Diagnosis of babesiosis using an immunoblot serologic test. Clin Diagn Lab Immunol. 2001;8:1177–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Khare R, Espy MJ, Cebelinski E, et al. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens. J Clin Microbiol. 2014;52:3667–73.

    CrossRef  Google Scholar 

  36. Liesman RM, Binnicker MJ. The role of multiplex molecular panels for the diagnosis of gastrointestinal infections in immunocompromised patients. Curr Opin Infect Dis. 2016;29:359–65.

    CrossRef  Google Scholar 

  37. Perry MD, Corden SA, Howe RA. Evaluation of the Luminex xTAG gastrointestinal pathogen panel and the Savyon diagnostics gastrointestinal infection panel for the detection of enteric pathogens in clinical samples. J Med Microbiol. 2014;63:1419–26.

    CrossRef  Google Scholar 

  38. Evaluation of Automatic Class III Designation (De Novo) for xTAG® Gastrointestinal Pathogen Panel (GPP) Decision Summary. 2/25/2018, at https://www.accessdata.fda.gov/cdrh_docs/reviews/K121454.pdf.

  39. Navidad JF, Griswold DJ, Gradus MS, Bhattacharyya S. Evaluation of Luminex xTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. J Clin Microbiol. 2013;51:3018–24.

    CAS  CrossRef  Google Scholar 

  40. Claas EC, Burnham CA, Mazzulli T, Templeton K, Topin F. Performance of the xTAG(R) gastrointestinal pathogen panel, a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. J Microbiol Biotechnol. 2013;23:1041–5.

    CrossRef  Google Scholar 

  41. Ken Dror S, Pavlotzky E, Barak M. Evaluation of the NanoCHIP(R) gastrointestinal panel (GIP) test for simultaneous detection of parasitic and bacterial enteric pathogens in fecal specimens. PLoS One. 2016;11:e0159440.

    CrossRef  Google Scholar 

  42. Stark D, Roberts T, Ellis JT, Marriott D, Harkness J. Evaluation of the EasyScreen enteric parasite detection kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagn Microbiol Infect Dis. 2014;78:149–52.

    CAS  CrossRef  Google Scholar 

  43. Binnicker MJ. Multiplex molecular panels for diagnosis of gastrointestinal infection: performance, result interpretation, and cost-effectiveness. J Clin Microbiol. 2015;53:3723–8.

    CAS  CrossRef  Google Scholar 

  44. Schreckenberger PC, McAdam AJ. Point-counterpoint: large multiplex PCR panels should be first-line tests for detection of respiratory and intestinal pathogens. J Clin Microbiol. 2015;53:3110–5.

    CrossRef  Google Scholar 

  45. DuPont HL. Acute infectious diarrhea in immunocompetent adults. N Engl J Med. 2014;370:1532–40.

    CAS  CrossRef  Google Scholar 

  46. Riddle MS, DuPont HL, Connor BA. ACG clinical guideline: diagnosis, treatment, and prevention of acute diarrheal infections in adults. Am J Gastroenterol. 2016;111:602–22.

    CAS  CrossRef  Google Scholar 

  47. de Almeida ME, Steurer FJ, Koru O, Herwaldt BL, Pieniazek NJ, da Silva AJ. Identification of Leishmania spp. by molecular amplification and DNA sequencing analysis of a fragment of rRNA internal transcribed spacer 2. J Clin Microbiol. 2011;49:3143–9.

    CrossRef  Google Scholar 

  48. Ujang JA, Kwan SH, Ismail MN, Lim BH, Noordin R, Othman N. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF. Clin Proteomics. 2016;13:33.

    CrossRef  Google Scholar 

  49. Wang Y, Cheng Z, Lu X, Tang C. Echinococcus multilocularis: proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Exp Parasitol. 2009;123:162–7.

    CAS  CrossRef  Google Scholar 

  50. Gitau EN, Kokwaro GO, Newton CR, Ward SA. Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry. Malar J. 2011;10:205.

    CAS  CrossRef  Google Scholar 

  51. Calderaro A, Piergianni M, Buttrini M, et al. MALDI-TOF mass spectrometry for the detection and differentiation of Entamoeba histolytica and Entamoeba dispar. PLoS One. 2015;10:e0122448.

    CrossRef  Google Scholar 

  52. Martiny D, Bart A, Vandenberg O, et al. Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2014;33:529–36.

    CAS  CrossRef  Google Scholar 

  53. Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front Cell Infect Microbiol. 2017;7:184.

    CrossRef  Google Scholar 

  54. Demirev PA, Feldman AB, Kongkasuriyachai D, Scholl P, Sullivan D Jr, Kumar N. Detection of malaria parasites in blood by laser desorption mass spectrometry. Anal Chem. 2002;74:3262–6.

    CAS  CrossRef  Google Scholar 

  55. Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44:3589–95.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobbi S. Pritt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pritt, B.S. (2018). Advanced Techniques in Diagnostic Parasitology. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-95111-9_8

Download citation