Advanced Techniques in Diagnostic Parasitology

  • Bobbi S. PrittEmail author


Parasites are a significant source of morbidity and mortality worldwide, infecting humans in nearly all geographic regions. While parasite diagnostics have traditionally relied on conventional morphology- and serology-based methods, recent advances in digital image acquisition and analytics, molecular amplification and sequencing methods, and proteomics have revolutionized clinical parasitology. Parasitic infections for which advanced techniques are now routinely used include malaria, toxoplasmosis, babesiosis, leishmaniasis, trichomoniasis, and gastrointestinal infections. The availability of commercially available tests has facilitated adoption in the diagnostic laboratory. This chapter will discuss the technologies that hold significant promise for routine diagnostic use.


  1. 1.
    DPDx – Laboratory Identification of Parasitic Diseases of Public Health Concern. 2018. 2/20/2018, at
  2. 2.
    Garcia LS. Diagnostic medical parasitology. 5th ed. Washington, DC: ASM Press; 2007.Google Scholar
  3. 3.
    Parasites – Neglected Parasitic Infections (NPIs). 2017. 2/20/2018, at
  4. 4.
    Neglected tropical diseases. 2018. 2/20/2018, at
  5. 5.
  6. 6.
    National Notifiable Diseases Surveillance System (NNDSS). 2017. 2/21/2018, at
  7. 7.
    Mathison BA, Pritt BS. Update on malaria diagnostics and test utilization. J Clin Microbiol. 2017;Google Scholar
  8. 8.
    Saeed MA, Jabbar A. “Smart diagnosis” of parasitic diseases by use of smartphones. J Clin Microbiol. 2018;56Google Scholar
  9. 9.
    Cybulski JS, Clements J, Prakash M. Foldscope: origami-based paper microscope. PLoS One. 2014;9:e98781.CrossRefGoogle Scholar
  10. 10.
    Ephraim RK, Duah E, Cybulski JS, et al. Diagnosis of Schistosoma haematobium infection with a mobile phone-mounted Foldscope and a reversed-lens CellScope in Ghana. Am J Trop Med Hyg. 2015;92:1253–6.CrossRefGoogle Scholar
  11. 11.
    Coulibaly JT, Ouattara M, D’Ambrosio MV, et al. Accuracy of mobile phone and handheld light microscopy for the diagnosis of schistosomiasis and intestinal Protozoa infections in cote d’Ivoire. PLoS Negl Trop Dis. 2016;10:e0004768.CrossRefGoogle Scholar
  12. 12.
    Bogoch II, Coulibaly JT, Andrews JR, et al. Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology. 2014;141:1811–8.CrossRefGoogle Scholar
  13. 13.
    D’Ambrosio MV, Bakalar M, Bennuru S, et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med. 2015;7:286re4.CrossRefGoogle Scholar
  14. 14.
    Kamgno J, Pion SD, Chesnais CB, et al. A test-and-not-treat strategy for onchocerciasis in Loa loa-endemic areas. N Engl J Med. 2017;377:2044–52.CrossRefGoogle Scholar
  15. 15.
    Stemple CC, Angus SV, Park TS, Yoon JY. Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood. J Lab Autom. 2014;19:35–41.CrossRefGoogle Scholar
  16. 16.
    Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS One. 2012;7:e42222.CrossRefGoogle Scholar
  17. 17.
    Eshel Y, Houri-Yafin A, Benkuzari H, et al. Evaluation of the Parasight platform for malaria diagnosis. J Clin Microbiol. 2017;55:768–75.CrossRefGoogle Scholar
  18. 18.
    Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Transl Res. 2018;194:36–55.CrossRefGoogle Scholar
  19. 19.
    Das DK, Mukherjee R, Chakraborty C. Computational microscopic imaging for malaria parasite detection: a systematic review. J Microsc. 2015;260:1–19.CrossRefGoogle Scholar
  20. 20.
    Tek FB, Dempster AG, Kale I. Computer vision for microscopy diagnosis of malaria. Malar J. 2009;8:153.CrossRefGoogle Scholar
  21. 21.
    Holmstrom O, Linder N, Ngasala B, et al. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium. Glob Health Action. 2017;10:1337325.CrossRefGoogle Scholar
  22. 22.
    Slusarewicz P, Pagano S, Mills C, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46:485–93.CrossRefGoogle Scholar
  23. 23.
    Scare JA, Slusarewicz P, Noel ML, Wielgus KM, Nielsen MK. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods. Vet Parasitol. 2017;247:85–92.CrossRefGoogle Scholar
  24. 24.
    Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006;6:582–8.CrossRefGoogle Scholar
  25. 25.
    Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15:66–78.CrossRefGoogle Scholar
  26. 26.
    Vasoo S, Pritt BS. Molecular diagnostics and parasitic disease. Clin Lab Med. 2013;33:461–503.CrossRefGoogle Scholar
  27. 27.
    Verweij JJ, Stensvold CR. Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin Microbiol Rev. 2014;27:371–418.CrossRefGoogle Scholar
  28. 28.
    Ryan U, Paparini A, Oskam C. New technologies for detection of enteric parasites. Trends Parasitol. 2017;33:532–46.CrossRefGoogle Scholar
  29. 29.
    Yansouni CP, Merckx J, Libman MD, Ndao M. Recent advances in clinical parasitology diagnostics. Curr Infect Dis Rep. 2014;16:434.CrossRefGoogle Scholar
  30. 30.
    Ramanan P, Bryson AL, Binnicker MJ, Pritt BS, Patel R. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev. 2018;31Google Scholar
  31. 31.
    Baron EJ, Miller JM, Weinstein MP, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis. 2013;57:e22–e121.CrossRefGoogle Scholar
  32. 32.
    Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.CrossRefGoogle Scholar
  33. 33.
    FilmArray Gastrointestinal Panel. 2018. 2/25/2018, at
  34. 34.
    Ryan R, Krause PJ, Radolf J, et al. Diagnosis of babesiosis using an immunoblot serologic test. Clin Diagn Lab Immunol. 2001;8:1177–80.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Khare R, Espy MJ, Cebelinski E, et al. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens. J Clin Microbiol. 2014;52:3667–73.CrossRefGoogle Scholar
  36. 36.
    Liesman RM, Binnicker MJ. The role of multiplex molecular panels for the diagnosis of gastrointestinal infections in immunocompromised patients. Curr Opin Infect Dis. 2016;29:359–65.CrossRefGoogle Scholar
  37. 37.
    Perry MD, Corden SA, Howe RA. Evaluation of the Luminex xTAG gastrointestinal pathogen panel and the Savyon diagnostics gastrointestinal infection panel for the detection of enteric pathogens in clinical samples. J Med Microbiol. 2014;63:1419–26.CrossRefGoogle Scholar
  38. 38.
    Evaluation of Automatic Class III Designation (De Novo) for xTAG® Gastrointestinal Pathogen Panel (GPP) Decision Summary. 2/25/2018, at
  39. 39.
    Navidad JF, Griswold DJ, Gradus MS, Bhattacharyya S. Evaluation of Luminex xTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. J Clin Microbiol. 2013;51:3018–24.CrossRefGoogle Scholar
  40. 40.
    Claas EC, Burnham CA, Mazzulli T, Templeton K, Topin F. Performance of the xTAG(R) gastrointestinal pathogen panel, a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. J Microbiol Biotechnol. 2013;23:1041–5.CrossRefGoogle Scholar
  41. 41.
    Ken Dror S, Pavlotzky E, Barak M. Evaluation of the NanoCHIP(R) gastrointestinal panel (GIP) test for simultaneous detection of parasitic and bacterial enteric pathogens in fecal specimens. PLoS One. 2016;11:e0159440.CrossRefGoogle Scholar
  42. 42.
    Stark D, Roberts T, Ellis JT, Marriott D, Harkness J. Evaluation of the EasyScreen enteric parasite detection kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagn Microbiol Infect Dis. 2014;78:149–52.CrossRefGoogle Scholar
  43. 43.
    Binnicker MJ. Multiplex molecular panels for diagnosis of gastrointestinal infection: performance, result interpretation, and cost-effectiveness. J Clin Microbiol. 2015;53:3723–8.CrossRefGoogle Scholar
  44. 44.
    Schreckenberger PC, McAdam AJ. Point-counterpoint: large multiplex PCR panels should be first-line tests for detection of respiratory and intestinal pathogens. J Clin Microbiol. 2015;53:3110–5.CrossRefGoogle Scholar
  45. 45.
    DuPont HL. Acute infectious diarrhea in immunocompetent adults. N Engl J Med. 2014;370:1532–40.CrossRefGoogle Scholar
  46. 46.
    Riddle MS, DuPont HL, Connor BA. ACG clinical guideline: diagnosis, treatment, and prevention of acute diarrheal infections in adults. Am J Gastroenterol. 2016;111:602–22.CrossRefGoogle Scholar
  47. 47.
    de Almeida ME, Steurer FJ, Koru O, Herwaldt BL, Pieniazek NJ, da Silva AJ. Identification of Leishmania spp. by molecular amplification and DNA sequencing analysis of a fragment of rRNA internal transcribed spacer 2. J Clin Microbiol. 2011;49:3143–9.CrossRefGoogle Scholar
  48. 48.
    Ujang JA, Kwan SH, Ismail MN, Lim BH, Noordin R, Othman N. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF. Clin Proteomics. 2016;13:33.CrossRefGoogle Scholar
  49. 49.
    Wang Y, Cheng Z, Lu X, Tang C. Echinococcus multilocularis: proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Exp Parasitol. 2009;123:162–7.CrossRefGoogle Scholar
  50. 50.
    Gitau EN, Kokwaro GO, Newton CR, Ward SA. Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry. Malar J. 2011;10:205.CrossRefGoogle Scholar
  51. 51.
    Calderaro A, Piergianni M, Buttrini M, et al. MALDI-TOF mass spectrometry for the detection and differentiation of Entamoeba histolytica and Entamoeba dispar. PLoS One. 2015;10:e0122448.CrossRefGoogle Scholar
  52. 52.
    Martiny D, Bart A, Vandenberg O, et al. Subtype determination of Blastocystis isolates by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2014;33:529–36.CrossRefGoogle Scholar
  53. 53.
    Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front Cell Infect Microbiol. 2017;7:184.CrossRefGoogle Scholar
  54. 54.
    Demirev PA, Feldman AB, Kongkasuriyachai D, Scholl P, Sullivan D Jr, Kumar N. Detection of malaria parasites in blood by laser desorption mass spectrometry. Anal Chem. 2002;74:3262–6.CrossRefGoogle Scholar
  55. 55.
    Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44:3589–95.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations