Advertisement

Temporal Artifacts from Edge Accumulation in Social Interaction Networks

  • Matt Revelle
  • Carlotta DomeniconiEmail author
  • Aditya Johri
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 102)

Abstract

There has been extensive research on social networks and methods for specific tasks such as: community detection, link prediction, and tracing information cascades; and a recent emphasis on using temporal dynamics of social networks to improve method performance. The underlying models are based on structural properties of the network, some of which we believe to be artifacts introduced from common misrepresentations of social networks. Specifically, representing a social network or series of social networks as an accumulation of network snapshots is problematic. In this paper, we use datasets with timestamped interactions to demonstrate how cumulative graphs differ from activity-based graphs and may introduce temporal artifacts.

Notes

Acknowledgements

We appreciate the Lifelong Kindergarten group at MIT for publicly sharing the Scratch datasets. This work is partly based upon research supported by U.S. National Science Foundation (NSF) Awards DUE-1444277 and EEC-1408674. Any opinions, recommendations, findings, or conclusions expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

References

  1. 1.
    Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)CrossRefGoogle Scholar
  2. 2.
    Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A Stat. Mech. Appl. 311(3), 590–614 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gonçalves, B., Perra, N., Vespignani, A.: Modeling users activity on twitter networks: validation of dunbars number. PloS One 6(8), e22656 (2011)CrossRefGoogle Scholar
  4. 4.
    Günnemann, S., Boden, B., Färber, I., Seidl,T.: Efficient mining of combined subspace and subgraph clusters in graphs with feature vectors. In: Advances in Knowledge Discovery and Data Mining, pp. 261–275. Springer (2013)CrossRefGoogle Scholar
  5. 5.
    Hidalgo, C.A., Rodriguez-Sickert, C.: The dynamics of a mobile phone network. Phys. A Stat. Mech. Appl. 387(12), 3017–3024 (2008)CrossRefGoogle Scholar
  6. 6.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  7. 7.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Link Mining: Models, Algorithms, and Applications, pp. 337–357. Springer (2010)CrossRefGoogle Scholar
  9. 9.
    Laurent, G., Saramäki, J., Karsai, M.: From calls to communities: a model for time varying social networks (2015). arXiv preprint arXiv:1506.00393
  10. 10.
    Leskovec, J.: Social media analytics: tracking, modeling and predicting the flow of information through networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 277–278. ACM (2011)Google Scholar
  11. 11.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)CrossRefGoogle Scholar
  12. 12.
    Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. ACM (2012)Google Scholar
  13. 13.
    Miritello, G., Lara, R., Cebrian, M., Moro, E.: Limited communication capacity unveils strategies for human interaction. Sci. Rep. 3 (2013)Google Scholar
  14. 14.
    Miritello, G., Lara, R., Moro, E.: Time allocation in social networks: correlation between social structure and human communication dynamics. In: Temporal Networks, pp. 175–190. Springer (2013)Google Scholar
  15. 15.
    Miritello, G., Moro, E., Lara, R., Martínez-López, R., Belchamber, J., Roberts, S.G., Dunbar, R.I.: Time as a limited resource: communication strategy in mobile phone networks. Soc. Netw. 35(1), 89–95 (2013)CrossRefGoogle Scholar
  16. 16.
    Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. Proceedings of the SIAM International Conference on Data Mining (SIAM) 9, 593–604 (2009)Google Scholar
  17. 17.
    Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2 (2012)Google Scholar
  18. 18.
    Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009)CrossRefGoogle Scholar
  19. 19.
    Rivera, M.T., Soderstrom, S.B., Uzzi, B.: Dynamics of dyads in social networks: assortative, relational, and proximity mechanisms. Ann. Rev. Sociol. 36, 91–115 (2010)CrossRefGoogle Scholar
  20. 20.
    Rossi, R., Neville, J.: Modeling the evolution of discussion topics and communication to improve relational classification. In: Proceedings of the First Workshop on Social Media Analytics, pp. 89–97. ACM (2010)Google Scholar
  21. 21.
    Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 667–676. ACM (2013)Google Scholar
  22. 22.
    Sun, Y., Tang, J., Han, J., Gupta, M., Zhao, B.: Community evolution detection in dynamic heterogeneous information networks. In: Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pp. 137–146. ACM (2010)Google Scholar
  23. 23.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM (2009)Google Scholar
  24. 24.
    Yang, J., Leskovec, J.: Community-affiliation graph model for overlapping network community detection. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 1170–1175. IEEE (2012)Google Scholar
  25. 25.
    Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: IEEE 13th International Conference on Data Mining, pp. 1151–1156. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Matt Revelle
    • 1
  • Carlotta Domeniconi
    • 1
    Email author
  • Aditya Johri
    • 1
  1. 1.George Mason UniversityFairfaxUSA

Personalised recommendations