Advertisement

A Low-Complexity Linear-in-the-Parameters Nonlinear Filter for Distorted Speech Signals

  • Danilo ComminielloEmail author
  • Michele Scarpiniti
  • Simone Scardapane
  • Raffaele Parisi
  • Aurelio Uncini
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 102)

Abstract

In this paper, the problem of the online modeling of nonlinear speech signals is addressed. In particular, the goal of this work is to provide a nonlinear model yielding the best tradeoff between performance results and required computational resources. Functional link adaptive filters were proved to be an effective model for this problem, providing the best performance when trigonometric expansion is used as a nonlinear transformation. Here, a different functional expansion is adopted based on the Chebyshev polynomials in order to reduce the overall computational complexity of the model, while achieving good results in terms of perceived quality of processed speech. The proposed model is assessed in the presence of nonlinearities for both simulated and real speech signals.

Keywords

Nonlinear modeling Functional links Chebyshev polynomials Loudspeaker distortions Nonlinear system identification 

References

  1. 1.
    Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrowband telephone networks and speech codecs (2000)Google Scholar
  2. 2.
    Carini, A., Cecchi, S., Romoli, L., Sicuranza, G.L.: Legendre nonlinear filters. Sig. Process. 109, 84–94 (2015)CrossRefGoogle Scholar
  3. 3.
    Carini, A., Sicuranza, G.L.: A study about Chebyshev nonlinear filters. Sig. Process. 122, 24–32 (2016)CrossRefGoogle Scholar
  4. 4.
    Comminiello, D., Cecchi, S., Scarpiniti, M., Gasparini, M., Romoli, L., Piazza, F., Uncini, A.: Intelligent acoustic interfaces with multisensor acquisition for immersive reproduction. IEEE Trans. Multimedia 17(8), 1262–1272 (2015)CrossRefGoogle Scholar
  5. 5.
    Comminiello, D., Scardapane, S., Scarpiniti, M., Parisi, R., Uncini, A.: Functional link expansions for nonlinear modeling of audio and speech signals. In: International Joint Conference on Neural Networks (IJCNN). Killarney, Ireland (2015)Google Scholar
  6. 6.
    Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L.A., Arenas-García, J., Uncini, A.: Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 21(7), 1502–1512 (2013)CrossRefGoogle Scholar
  7. 7.
    Comminiello, D., Scarpiniti, M., Parisi, R., Uncini, A.: Intelligent acoustic interfaces for immersive audio. In: 134th Audio Engineering Society Convention. Rome, Italy, 4-7 May 2013Google Scholar
  8. 8.
    Gil-Cacho, J.M., Signoretto, M., Van Waterschoot, T., Moonen, M., Jensen, S.H.: Nonlinear acoustic echo cancellation based on a sliding-window leaky kernel affine projection algorithm. IEEE Trans. Audio Speech Lang. Process. 21(9), 1867–1878 (2013)CrossRefGoogle Scholar
  9. 9.
    Guerin, A., Faucon, G., Le Bouquin-Jeannes, R.: Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Trans. Speech Audio Process. 11(6), 672–683 (2003)CrossRefGoogle Scholar
  10. 10.
    Hofmann, C., Guenther, M., Huemmer, C., Kellermann, W.: Efficient nonlinear acoustic echo cancellation by partitioned-block significance-aware Hammerstein group models. In: 24th European Signal Processing Conference (EUSIPCO), pp. 1783–1787. Budapest, Hungary (2016)Google Scholar
  11. 11.
    Pao, Y.H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, MA (1989)zbMATHGoogle Scholar
  12. 12.
    Patel, V., George, N.V.: Design of dynamic linear-in-the-parameters nonlinear filters for active noise control. In: 24th European Signal Processing Conference (EUSIPCO), pp. 16–20. Budapest, Hungary (2016)Google Scholar
  13. 13.
    Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. B Cybern. 32(4), 505–511 (2002)CrossRefGoogle Scholar
  14. 14.
    Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York, NY (1976)zbMATHGoogle Scholar
  15. 15.
    Scardapane, S., Comminiello, D., Scarpiniti, M., Uncini, A.: Benchmarking functional link expansions for audio classification tasks. In: Bassis, S., Esposito, A., Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks: Computational Intelligence for ICT, Smart Innovation, Systems and Technologies, vol. 54, pp. 133–141. Springer (2016)CrossRefGoogle Scholar
  16. 16.
    Sicuranza, G.L., Carini, A.: A generalized FLANN filter for nonlinear active noise control. IEEE Trans. Audio Speech Lang. Process. 19(8), 2412–2417 (2011)CrossRefGoogle Scholar
  17. 17.
    Uncini, A.: Fundamentals of adaptive signal processing. In: Signal and Communication Technology. Springer International Publishing AG, Cham, Switzerland (2015). ISBN 978-3-319-02806-4Google Scholar
  18. 18.
    Van Vaerenbergh, S., Azpicueta-Ruiz, L.A., Comminiello, D.: A split kernel adaptive filtering architecture for nonlinear acoustic echo cancellation. In: 24th European Signal Processing Conference (EUSIPCO), pp. 1768–1772. Budapest, Hungary (2016)Google Scholar
  19. 19.
    Zhao, H., Zhang, J.: Functional link neural network cascaded with Chebyshev orthogonal polynomial for nonlinear channel equalization. Sig. Process. 88(8), 1946–1957 (2008). AugCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Danilo Comminiello
    • 1
    Email author
  • Michele Scarpiniti
    • 1
  • Simone Scardapane
    • 1
  • Raffaele Parisi
    • 1
  • Aurelio Uncini
    • 1
  1. 1.Department of Information Engineering, Electronics and Telecommunications (DIET)“Sapienza” University of RomeRomeItaly

Personalised recommendations