Skip to main content

Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis

  • 594 Accesses

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 103)

Abstract

Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution.

Keywords

  • Computer-assisted medical image segmentation
  • Pattern Recognition
  • Magnetic Resonance guided Focused Ultrasound Surgery
  • Uterine fibroids
  • Non-Perfused Volume assessment
  • Clinical feasibility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jolesz, F.A.: MRI-guided focused ultrasound surgery. Annu. Rev. Med. 60, 417–430 (2009). https://doi.org/10.1146/annurev.med.60.041707.170303

    CrossRef  Google Scholar 

  2. Wu, T., Felmlee, J.P.: A quality control program for MR-guided focused ultrasound ablation therapy. J. Appl. Clin. Med. Phys. 3(2), 162–167 (2002). https://doi.org/10.1120/jacmp.v3i2.2584

    CrossRef  Google Scholar 

  3. Cline, H.E., Schenck, J.F., Hynynen, K., Watkins, R.D., Souza, S.P., Jolesz, F.A.: MR-guided focused ultrasound surgery. J. Comput. Assist. Tomogr. 16(6), 956–965 (1992)

    CrossRef  Google Scholar 

  4. Agnello, L., Militello, C., Gagliardo, C., Vitabile, S.: Radial basis function interpolation for referenceless thermometry enhancement. In: Advances in Neural Networks—Computational and Theoretical Issues, Smart Innovation, Systems and Technologies, vol. 37, pp. 195–206. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18164-6_19

  5. Buttram Jr., V.C., Reiter, R.C.: Uterine leiomyomata: etiology, symptomatology, and management. Fertil. Steril. 36(4), 433–445 (1981). https://doi.org/10.1016/S0015-0282(16)45789-4

    CrossRef  Google Scholar 

  6. Cramer, S.F., Patel, A.: The frequency of uterine leiomyomas. Am. J. Clin. Pathol. 94(4), 435–438 (1990). https://doi.org/10.1093/ajcp/94.4.435

    CrossRef  Google Scholar 

  7. Stewart, E.A.: Uterine fibroids. Lancet 357(9252), 293–298 (2001). https://doi.org/10.1016/S0140-6736(00)03622-9

    CrossRef  Google Scholar 

  8. Machtinger, R., Inbar, Y., Cohen-Eylon, S., et al.: MR-guided focus ultrasound (MRgFUS) for symptomatic uterine fibroids: predictors of treatment success. Hum. Reprod. 27(12), 3425–3431 (2012). https://doi.org/10.1093/humrep/des333

    CrossRef  Google Scholar 

  9. Militello, C., Rundo, L., Gilardi, M.C.: Applications of imaging processing to MRgFUS treatment for fibroids: a review. Transl. Cancer Res. 3(5), 472–482 (2014). https://doi.org/10.3978/j.issn.2218-676X.2014.09.06

    CrossRef  Google Scholar 

  10. Masciocchi, C., Arrigoni, F., Ferrari, F., Giordano, A.V., Iafrate, S., Capretti, I., et al.: Uterine fibroid therapy using interventional radiology mini-invasive treatments: current perspective. Med. Oncol. 34(4), 52 (2017). https://doi.org/10.1007/s12032-017-0906-5

    CrossRef  Google Scholar 

  11. Militello, C., Vitabile, S., Rundo, L., Russo, G., Midiri, M., Gilardi, M.C.: A fully automatic 2D segmentation method for uterine fibroid in MRgFUS treatment evaluation. Comput. Biol. Med. 62, 277–292 (2015). https://doi.org/10.1016/j.compbiomed.2015.04.030

    CrossRef  Google Scholar 

  12. Rundo, L., Militello, C., Vitabile, S., Casarino, C., Russo, G., Midiri, M., Gilardi, M.C.: Combining split-and-merge and multi-seed region growing algorithms for uterine fibroid segmentation in MRgFUS treatments. Med. Biol. Eng. Comput. 54(7), 1071–1084 (2016). https://doi.org/10.1007/s11517-015-1404-6

    CrossRef  Google Scholar 

  13. Guyon, J.P., Foskey, M., Kim, J., Firat, Z., Davis, B., Haneke, K., Aylward, S.R.: VETOT, volume estimation and tracking over time: Framework and validation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 142–149. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-39903-2_18

  14. Ben-Zadok, N., Riklin-Raviv, T., Kiryati, N.: Interactive level set segmentation for image-guided therapy. In: Biomed Imaging Nano Macro (ISBI ’09), pp. 1079–1082 (2009). https://doi.org/10.1109/isbi.2009.5193243

  15. Yao, J., Chen, D., Lu, W., Premkumar, A.: Uterine fibroid segmentation and volume measurement on MRI. In: Manduca, A., Amini, A.A. (eds.) Medical Imaging 2006: Physiology, Function, and Structure from Medical Images. Proceedings of the SPIE, vol. 6143, pp. 640–649 (2006). https://doi.org/10.1117/12.653856

  16. Khotanlou, H., Fallahi, A., Oghabian, M.A., Pooyan, M.: Segmentation of uterine fibroid on MR images based on Chan-Vese level set method and shape prior model. Biomed. Eng. Appl. Basis Commun. 26(02), 1450030 (2014). https://doi.org/10.4015/S1016237214500306

    CrossRef  Google Scholar 

  17. Fallahi, A., Pooyan, M., Khotanlou, H., Hashemi, H., Firouznia, K., Oghabian, M.A.: Uterine fibroid segmentation on multiplan MRI using FCM, MPFCM and morphological operations. In: 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 7, pp. V7-1–V7-5, 16–18 April (2010). https://doi.org/10.1109/iccet.2010.5485920

  18. Fallahi, A., Pooyan, M., Hashemi, H., Ghanaati, H., Oghabian, M.A., Khotanlou, H., Shakiba, M., Jalali, A.H., Firouznia, K.: Uterine segmentation and volume measurement in uterine fibroid patients MRI using fuzzy C-mean algorithm and morphological operations. Iran. J. Radiol. 8(3), 150–156 (2011). https://doi.org/10.5812/kmp.iranjradiol.17351065.3142

    CrossRef  Google Scholar 

  19. Militello, C., Vitabile, S., Russo, G., Candiano, G., Gagliardo, C., Midiri, M., Gilardi, M.C.: A semi-automatic multi-seed region-growing approach for uterine fibroids segmentation in MRgFUS treatment. In: 7th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2013), pp. 176–182 (2013). https://doi.org/10.1109/cisis.2013.36

  20. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    CrossRef  Google Scholar 

  21. Rundo, L., Militello, C., Russo, G., D’Urso, D., Valastro, L.M., Garufi, A., Mauri, G., Vitabile, S., Gilardi M.C.: Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm. In: Multidisciplinary Approaches to Neural Computing, Smart Innovation, Systems and Technologies, vol. 69, pp. 23–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56904-8_3

  22. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 8(8), 630–632 (1978). https://doi.org/10.1109/TSMC.1978.4310039

    CrossRef  Google Scholar 

  23. Trussell, H.J.: Comments on Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man. Cybern. 9(5), 311 (1979). https://doi.org/10.1109/tsmc.1979.4310204

    CrossRef  Google Scholar 

  24. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree transversal algorithm. J. ACM 23, 368–388 (1976). https://doi.org/10.1145/321941.321956

    CrossRef  MATH  Google Scholar 

  25. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 6, 641–647 (1994). https://doi.org/10.1109/34.295913

    CrossRef  Google Scholar 

  26. Otsu, N.: A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    CrossRef  MathSciNet  Google Scholar 

  27. Fenster, A., Chiu, B.: Evaluation of segmentation algorithms for medical imaging. In: 27th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBS), pp. 7186–7189 (2005). https://doi.org/10.1109/iembs.2005.1616166

  28. Militello, C., Vitabile, S., Rundo, L., Gagliardo, C., & Salerno, S.: An edge-driven 3D region-growing approach for upper airway morphology and volume evaluation in patients with Pierre Robin sequence. Int J Adapt and Innovative Syst. 2(3), 232–253 (2015). https://doi.org/10.1504/IJAIS.2015.074406.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Militello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rundo, L. et al. (2019). Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Quantifying and Processing Biomedical and Behavioral Signals. WIRN 2017 2017. Smart Innovation, Systems and Technologies, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-95095-2_22

Download citation