Skip to main content

Ballistic and Material Tests and Simulations on Ultra-High Performance Concrete

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Ultra-high performance concretes (UHPC), meaning concretes with compressive strengths above 150 MPa (B-150), introduce improved properties such as stiffness, compressive strength, and post-failure compliance as compared to standard concretes. Advantages are shown in standard applications of construction, yet, a large potential exists in applications of protective structures to withstand impulsive loadings of blast or direct impact. In this work an UHPC with a compression strength of 200 MPa was used to test and develop a material model to enable predictions for impact and penetration. The material was first tested to characterize the material behavior under quasistatic loading in torsion, compression and triaxial compression, up to confinement pressures of 500 MPa. Moreover, the UHPC was characterized under dynamic loading, using a Kolsky bar (Split Hopkinson Pressure Bar). Based on these lab-scale tests, a Johnson-Holmquist material model was calibrated for the numerical simulations. Finally, ballistic tests were performed with two projectile geometries, using two configurations: a standalone UHPC panel to obtain the ballistic limit, and depth of penetration (DOP) measurements, with aluminum backing, to better relate to the concrete strength during penetration conditions. Preliminary ballistic computations with the UHPC model, calibrated from the lab-scale tests for LS-DYNA, provided good predictions when compared to most of the tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T., Fröhlich, S.: Ultra-High Performance Concrete UHPC. Ernst & Sohn, Berlin/Germany (2014)

    Book  Google Scholar 

  2. Nöldgen, M., Riedel, W., Thoma, K., Fehling, E.: Properties of ultra-high performance concrete (UHPC) in tension at high strain rates. Proceedings of the VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures. Toledo/Spain (2013)

    Google Scholar 

  3. Pajak, M.: The influence of the strain rate on the strength of concrete taking into account the experimental techniques. Archit. Civ. Eng. Environ. 4(11), 77–86 (2011)

    Google Scholar 

  4. Holmquist, T.J., Johnson, G.R., Cook, W.H.: A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In Proceedings of the 14th International Symposium on Ballistics, Quebec City, Canada, September (1993)

    Google Scholar 

  5. Erzar, B., Pontiroli, C., Buzaud, E.: Shock characterization of an ultra-high strength concrete. Eur. Phys. J. Spec. Top. 225(2), 355–361 (2016). https://doi.org/10.1140/epjst/e2016-02637-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Chocron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chocron, S. et al. (2019). Ballistic and Material Tests and Simulations on Ultra-High Performance Concrete. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics