Skip to main content

Computational and Experimental Characterization of 3D Printed Components by Fused Deposition Modeling

  • Conference paper
  • First Online:
Book cover Mechanics of Additive and Advanced Manufacturing, Volume 8

Abstract

This paper presents the development of methodologies to understand the effects of process parameters in 3D printed components’ performance and geometrical characteristics, specifically distortions and residual stresses. Full-field-of-view noninvasive optical metrology methodologies and computational simulations outline the framework of this approach. We are developing computational models to predict the critical attributes of 3D printed parts by Fused Deposition Modeling (FDM). We are also designing particular testing artifacts with specific shapes and geometries to conduct Non-Destructive Testing (NDT) using full-field-of-view optical sensors, i.e., Digital Holographic Interferometry, Digital Image Correlation, and Digital Fringe Projection. These sensors can be utilized during and after fabrication for extraction of mechanical properties, identification of defects, and characterization of geometrical accuracies/distortions as a function of process parameters. The knowledge gained from NDT results is used for tuning our computational models. Representative results demonstrate the feasibility of the proposed computational-experimental approach for potential implementation into FDM processes in order to understand the interconnection between process parameters and part performance, which eventually will lead to improvements in the integrity, repeatability, and consistency of printed components and to reduced costs and optimized energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Chou, Y.: Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 220(10), 1663–1671 (2006)

    Article  Google Scholar 

  2. Zhang, Y., Chou, K.: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222(8), 959–968 (2008)

    Article  Google Scholar 

  3. Favaloro, A., Brenken, B., Barocio, E., DeNardo, N.M., Pipes, R.B.: Microstructural modeling of fiber filled polymers in fused filament fabrication. Proc. SAMPE Conference, Long Beach, CA (2016)

    Google Scholar 

  4. Brenken, B., Favaloro, A., Barocio, E., DeNardo, N.M., Pipes, R.B.: Development of a model to predict temperature history and crystallization behavior of 3D printed parts made from fiber-reinforced thermoplastic polymers. Proc. SAMPE Conference, Long Beach, CA (2017)

    Google Scholar 

  5. Favaloro, A.J., Brenken, B., Barocio, E., Pipes, R.B.: Simulation of polymeric composites additive manufacturing using Abaqus. Proc. Science in the Age of Experience Conference, pp. 15–18

    Google Scholar 

  6. Pooladvand, K., Furlong, C.: Digital holography and digital image correlation in additive manufacturing. ISEM 2015, 5th International Symposium on Experimental Mechanics, Guanajuato, Mexico (2015)

    Google Scholar 

  7. Digilov, R.M., Abramovich, H.: Flexural vibration test of a beam elastically restrained at one end: a new approach for Young’s modulus determination. Adv. Mater. Sci. Eng. 2013, 1–6 (2013)

    Article  Google Scholar 

  8. Buchaillot, L., Farnault, E., Hoummady, M., Fujita, H.: Silicon nitride thin films Young’s modulus determination by an optical non-destructive method. Japanese J. App. Phy. 36(6B), L794 (1997)

    Article  Google Scholar 

  9. Roebben, G., Bollen, B., Brebels, A., Van Humbeeck, J., Van der Biest, O.: Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature. Rev. Scient. Inst. 68(12), 4511–4515 (1997)

    Article  Google Scholar 

  10. Burdzik, R., Stanik, Z., Warczek, J.: Method of assessing the impact of material properties on the propagation of vibrations excited with a single force impulse. Arch. Metal. Mater. 57(2), 409–416 (2012)

    Article  Google Scholar 

  11. Zeng, D.-J., Zheng, Q.-S.: Resonant frequency-based method for measuring the Young’s moduli of nanowires. Phys. Rev. B. 76(7), 075417 (2007)

    Article  Google Scholar 

  12. Sandia, N.L.: Non-Destructive Additive Manufacturing Characterization Coupon. Sandia National Laboratories. https://ip.sandia.gov (2018)

  13. Pooladvand, K., Furlong, C.: Thermo-mechanical investigation of fused deposition modeling by computational and experimental methods. In: Proc. SEM, Mechanics of Composite and Multi-functional Materials, vol. 7, pp. 45–54. Springer. https://link.springer.com/chapter/10.1007/978-3-319-41766-0_6 (2017)

  14. Kamara, A., Marimuthu, S., Li, L.: A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts. J. Manuf. Sci. Technol. 133(3), 031013 (2011)

    Google Scholar 

  15. Thomas, J., Rodríguez, J.: Modeling the fracture strength between fused deposition extruded roads. Proc. Proceedings of the 11th Solid Freeform Fabrication Symposium, pp. 16–23

    Google Scholar 

Download references

Acknowledgments

This work is being partially supported by NSF award CMMI-1428921. We would also like to gratefully acknowledge the support of the Mechanical Engineering Department of Worcester Polytechnic Institute (WPI) and contributions by members of the CHSLT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koohyar Pooladvand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pooladvand, K., Furlong, C. (2019). Computational and Experimental Characterization of 3D Printed Components by Fused Deposition Modeling. In: Kramer, S., Jordan, J., Jin, H., Carroll, J., Beese, A. (eds) Mechanics of Additive and Advanced Manufacturing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95083-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95083-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95082-2

  • Online ISBN: 978-3-319-95083-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics