Granular Lattice: Beyond Molecular Chaos

Part of the Springer Theses book series (Springer Theses)


The hydrodynamic behavior derived in Chap.  4 and numerically analyzed in Sect.  4.5 has been obtained through the Molecular Chaos ansatz ( 4.14), mathematically equivalent to the factorization of velocity correlations
$$\begin{aligned} \langle v_{l,p} v_{l',p} \rangle = \langle v_{l,p} \rangle \langle v_{l',p} \rangle . \end{aligned}$$


Granular Lattice Velocity Correlation Cluster Ansatz Rescaled Temperature Large Size Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9), 093203 (2016).,
  2. 2.
    C.A. Plata, Ph.D. thesis, To be defendedGoogle Scholar
  3. 3.
    C.M. Bender, S.A. Orszag, in Advanced Mathematical Methods for Scientists and Engineers (Springer, Berlin, 1999)CrossRefGoogle Scholar
  4. 4.
    J.J. Brey, A. Domínguez, M.I. García de Soria, P. Maynar, Mesoscopic theory of critical fluctuations in isolated granular gases. Phys. Rev. Lett. 96, 158002 (2006).
  5. 5.
    E. Ben-Naim, P.L. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000).
  6. 6.
    A. Baldassarri, U.M.B. Marconi, A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. EPL (Europhys. Lett.) 58(1), 14 (2002).
  7. 7.
    G. Costantini, U.M.B. Marconi, A. Puglisi, Velocity fluctuations in a one-dimensional inelastic Maxwell model. J. Stat. Mech. Theory Exp. 2007(08), P08031 (2007).,

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations