Advertisement

Granular Lattice: Fluctuating Hydrodynamics

Chapter
  • 202 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Inspired from the works of Baldassarri et al. [1] and Prados et al. [2], we formulated a granular lattice model to derive fluctuating hydrodynamics from microscopic ingredients under controlled assumptions, considering only shear modes on a granular linear chain [3]. The evolution of the system conserves momentum and dissipates energy, as in granular collisions. The new model is different from the previous proposals in a few crucial aspects. In [1], the velocity field evolved under the enforcement of the so-called kinematic constraint, which is disregarded here. In [2], only the energy field was considered, therefore momentum conservation was absent. The results I present especially focus on the hydrodynamic behavior of the model; the analysis of velocity distribution evolution and a detailed approach to a mesoscopic fluctuation theory of our model can be found respectively in [4, 5, 6].

References

  1. 1.
    A. Baldassarri, U. Marini Bettolo Marconi, A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. EPL Europhys. Lett. 58(1),14 (2002). http://stacks.iop.org/0295-5075/58/i=1/a=014,  https://doi.org/10.1209/epl/i2002-00600-6
  2. 2.
    A. Prados, A. Lasanta, P.I. Hurtado, Large fluctuations in driven dissipative media. Phys. Rev. Lett. 107, 140601 (2011). https://link.aps.org/doi/10.1103/PhysRevLett.107.140601
  3. 3.
    A. Lasanta, A. Manacorda, A. Prados, A. Puglisi, Fluctuating hydrodynamics and mesoscopic effects of spatial correlations in dissipative systems with conserved momentum. New J. Phys. 17, 083039 (2015).  https://doi.org/10.1088/1367-2630/17/8/083039ADSCrossRefGoogle Scholar
  4. 4.
    A. Manacorda, C.A. Plata, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: hydrodynamic description. J. Stat. Phys. 164(4), 810–841 (2016). https://doi.org/10.1007/s10955-016-1575-z
  5. 5.
    C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9), 093203 (2016). http://stacks.iop.org/1742-5468/2016/i=9/a=093203
  6. 6.
    C.A. Plata, Ph.D. thesis, To be defendedGoogle Scholar
  7. 7.
    J.J. Brey, M.J. Ruiz-Montero, D. Cubero, Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996). https://link.aps.org/doi/10.1103/PhysRevE.54.3664
  8. 8.
    M. Ernst, Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78(1), 1–171 (1981). http://www.sciencedirect.com/science/article/pii/0370157381900028
  9. 9.
    M.H. Ernst, E. Trizac, A. Barrat, The rich behavior of the Boltzmann equation for dissipative gases. EPL (Europhys. Lett.) 76(1), 56 (2006). http://stacks.iop.org/0295-5075/76/i=1/a=056,  https://doi.org/10.1209/epl/i2006-10225-3
  10. 10.
    A. Bortz, M. Kalos, J. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1, 10–18 (1975). http://www.sciencedirect.com/science/article/pii/0021999175900601
  11. 11.
    A. Prados, J.J. Brey, B. Sánchez-Rey, A dynamical Monte Carlo algorithm for master equations with time-dependent transition rates. J. Stat. Phys. 89(3), 709–734 (1997). http://dx.doi.org/10.1007/BF02765541
  12. 12.
    N.G.V. Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, 1992)Google Scholar
  13. 13.
    U. Marini Bettolo Marconi, A. Puglisi, A. Vulpiani, About an H-theorem for systems with non-conservative interactions.J. Stat. Mech. (Theor. Exp.) 2013(08), P08003 (2013). http://stacks.iop.org/1742-5468/2013/i=08/a=P08003
  14. 14.
    M.I.G. de Soria, P. Maynar, S. Mischler, C. Mouhot, T. Rey, E. Trizac, Towards an H-theorem for granular gases. J. Stat. Mech. (Theor. Exp.) 2015(11), P11009 (2015). http://stacks.iop.org/1742-5468/2015/i=11/a=P11009
  15. 15.
    C.A. Plata, A. Prados, Global stability and \(H\) theorem in lattice models with nonconservative interactions. Phys. Rev. E 95, 052121 (2017). https://link.aps.org/doi/10.1103/PhysRevE.95.052121
  16. 16.
    P.K. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983).  https://doi.org/10.1017/S0022112083003419ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    A.W. Lees, S.F. Edwards, The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 5(15), 1921 (1972). http://stacks.iop.org/0022-3719/5/i=15/a=006
  18. 18.
    V. Garzó, Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73, 021304 (2006). https://link.aps.org/doi/10.1103/PhysRevE.73.021304
  19. 19.
    A. Prados, A. Lasanta, P.I. Hurtado, Nonlinear driven diffusive systems with dissipation: fluctuating hydrodynamics. Phys. Rev. E 86, 031134 (2012). https://link.aps.org/doi/10.1103/PhysRevE.86.031134
  20. 20.
    P.I. Hurtado, A. Lasanta, A. Prados, Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation. Phys. Rev. E 88, 022110 (2013). https://link.aps.org/doi/10.1103/PhysRevE.88.022110
  21. 21.
    A. Lasanta, P.I. Hurtado, A. Prados, Statistics of the dissipated energy in driven diffusive systems. Eur. Phys. J. E 39(3), 35 (2016). http://dx.doi.org/10.1140/epje/i2016-16035-4
  22. 22.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer Science & Business Media, Berlin, 2012)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations