Theoretical Models of Granular and Active Matter

Part of the Springer Theses book series (Springer Theses)


This chapter introduces the main tehoretical models used to describe and reproduce the behavior of granular and active matter. The first Sect. 2.1 is dedicated to kinetic theory: established for the study of elastic gases, its aim is to describe a gas in term of mechanical coordinates of all its particles to derive its macroscopic properties such as pressure, energy and entropy through the statistical properties of the microscopic variables. This method, which was derived for elastic gases, can apply also for granular materials. The second Sect. 2.2 reviews the most important physical models of active matter, focusing on the essential ingredients to produce the typical interactions and self-propulsion discussed in Chap.  1. The last Sect. 2.3 investigates a possible theoretical comparison and symmetry between granular and active matter.


Elastic Gas Homogeneous Cooling State (HCS) Vicsek Model Inelastic Collapse Active Brownian Particles (ABP) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Cercignani, R. Illner, M. Pulvirenti, in The Mathematical Theory of Dilute Gases (Springer Science & Business Media, Berlin, 2013)zbMATHGoogle Scholar
  2. 2.
    K. Huang, in Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)zbMATHGoogle Scholar
  3. 3.
    T. Pöschel, N.V. Brilliantov, in Granular Gas Dynamics (Springer, Berlin, 2003)CrossRefGoogle Scholar
  4. 4.
    N. Brilliantov, T. Pöschel (eds.), in Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  5. 5.
    A. Puglisi, in Transport and Fluctuations in Granular Fluids (Springer, Berlin, 2014)Google Scholar
  6. 6.
    M. Ernst, J. Dorfman, W. Hoegy, J.V. Leeuwen, Hard-sphere dynamics and binary-collision operators. Physica 45(1), 127–146 (1969).,
  7. 7.
    J.-M. Hertzsch, F. Spahn, N.V. Brilliantov, On low-velocity collisions of viscoelastic particles. J. Phys. II Fr. 5(11), 1725–1738 (1995). Scholar
  8. 8.
    N.V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel, Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996). Scholar
  9. 9.
    A. Goldshtein, M. Shapiro, Mechanics of collisional motion of granular materials. part 1. general hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995). Scholar
  10. 10.
    S. McNamara, W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A Fluid Dyn. 4(3), 496–504 (1992). Scholar
  11. 11.
    S. McNamara, W.R. Young, Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E 53, 5089–5100 (1996). Scholar
  12. 12.
    T. van Noije, M. Ernst, Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998). Scholar
  13. 13.
    P.K. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983). Scholar
  14. 14.
    I. Goldhirsch, G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993).
  15. 15.
    J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Steady-state representation of the homogeneous cooling state of a granular gas. Phys. Rev. E 69, 051303 (2004). Scholar
  16. 16.
    A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848–3851 (1998).
  17. 17.
    A. Puglisi, V. Loreto, U.M.B. Marconi, A. Vulpiani, Kinetic approach to granular gases. Phys. Rev. E 59, 5582–5595 (1999). Scholar
  18. 18.
    M. Ernst, Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981). Scholar
  19. 19.
    D. Blackwell, R.D. Mauldin, Ulam’s redistribution of energy problem: collision transformations. Lett. Math. Phys. 10(2), 149–153 (1985). Scholar
  20. 20.
    E. Ben-Naim, P.L. Krapivsky, Maxwell model of traffic flows. Phys. Rev. E 59, 88–97 (1999). Scholar
  21. 21.
    E. Ben-Naim, P.L. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000). Scholar
  22. 22.
    A. Baldassarri, U.M.B. Marconi, A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. EPL (Europhys. Lett.) 58(1), 14 (2002).
  23. 23.
    G. Costantini, U.M.B. Marconi, A. Puglisi, Velocity fluctuations in a one-dimensional inelastic Maxwell model. J. Stat. Mech. Theory Exp. 2007(08), P08031 (2007).,
  24. 24.
    T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3–4), 71–140 (2012).,
  25. 25.
    J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015). Scholar
  26. 26.
    A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106(37), 15567–15572 (2009). Scholar
  27. 27.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
  28. 28.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
  29. 29.
    J. Tailleur, M.E. Cates, Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100, 218103 (2008).
  30. 30.
    W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale, A.M. Walczak, Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. 4791(13), 109–4786 (2012)., arXiv:,
  31. 31.
    A.P. Solon, M.E. Cates, J. Tailleur, Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224(7), 1231–1262 (2015). Scholar
  32. 32.
    M. Paoluzzi, C. Maggi, U.M.B. Marconi, N. Gnan, Critical phenomena in active matter. Phys. Rev. E 94, 052602 (2016). Scholar
  33. 33.
    A. Czirók, T. Vicsek, Collective behavior of interacting self-propelled particles. Phys. A Stat. Mech. Appl. 281(1–4), 17–29 (2000). Scholar
  34. 34.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008). Scholar
  35. 35.
    F. Ginelli, H. Chaté, Relevance of metric-free interactions in flocking phenomena. 105, 168103 (2010).
  36. 36.
    A.P. Solon, J. Tailleur, Revisiting the flocking transition using active spins. Phys. Rev. Lett. 111, 078101 (2013).
  37. 37.
    T. Mora, A.M. Walczak, L. Del Castello, F. Ginelli, S. Melillo, L. Parisi, M. Viale, A. Cavagna, I. Giardina, Local equilibrium in bird flocks. Nat. Phys. 12(12), 1153–1157 (2016). Scholar
  38. 38.
    E. Fodor, C. Nardini, M.E. Cates, J. Tailleur, P. Visco, F. van Wijland, How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016).
  39. 39.
    U.M.B. Marconi, A. Puglisi, C. Maggi, Heat, temperature and clausius inequality in a model for active Brownian particles. Sci. Rep. 7 (2017).
  40. 40.
    Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators (Springer, Berlin, 1975), pp. 420–422.
  41. 41.
    Y. Kuramoto, in Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)CrossRefGoogle Scholar
  42. 42.
    J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).
  43. 43.
    E. Bertin, in Statistical Physics of Complex Systems (Springer, Berlin, 2016)CrossRefGoogle Scholar
  44. 44.
    E. Bertin, Theoretical approaches to the steady-state statistical physics of interacting dissipative units. J. Phys. A Math. Theory 50(8), 083001 (2017).,
  45. 45.
    S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D Nonlinear Phenom. 143(1), 1–20 (2000).,
  46. 46.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).
  47. 47.
    A. Czirók, H.E. Stanley, T. Vicsek, Spontaneously ordered motion of self-propelled particles. J. Phys. A Math. Gen. 30(5), 1375 (1997). Scholar
  48. 48.
    A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54, 1791–1801 (1996). Scholar
  49. 49.
    A. Chepizhko, V. Kulinskii, On the relation between Vicsek and Kuramoto models of spontaneous synchronization. Phys. A Stat. Mech. Appl. 389(23), 5347–5352 (2010). Scholar
  50. 50.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Active Brownian particles. Eur. Phys. J. Spec. Top. 202(1), 1–162 (2012). Scholar
  51. 51.
    C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences., 4th edn. (Springer, Berlin, 2009)Google Scholar
  52. 52.
    Phys. Rev. E Theory of continuum random walks and application to chemotaxis. 48, 2553–2568 (1993).
  53. 53.
    M.E. Cates, J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation. EPL (Europhys. Lett.) 101(2), 20010 (2013).
  54. 54.
    N. Koumakis, C. Maggi, R. Di Leonardo, Directed transport of active particles over asymmetric energy barriers. Soft Matter 10, 5695–5701 (2014). Scholar
  55. 55.
    T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015). Scholar
  56. 56.
    C. Maggi, U.M.B. Marconi, N. Gnan, R. Di Leonardo, Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 5, 10742 (2015). Scholar
  57. 57.
    U.M.B. Marconi, C. Maggi, Towards a statistical mechanical theory of active fluids. Soft Matter 11, 8768–8781 (2015). Scholar
  58. 58.
    D. Grossman, I.S. Aranson, E.B. Jacob, Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008).,
  59. 59.
    C.A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, H. Chaté, Long-range ordering of vibrated polar disks. Phys. Rev. Lett. 110, 208001 (2013).
  60. 60.
    J. Deseigne, O. Dauchot, H. Chaté, Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).
  61. 61.
    N. Kumar, H. Soni, S. Ramaswamy, A. Sood, Flocking at a distance in active granular matter. Nat. Commun. 5 (2014).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations