Advertisement

Introduction

Chapter
  • 204 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Granular and active matter are among the most studied systems in out of equilibrium statistical physics.

References

  1. 1.
    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).  https://doi.org/10.1103/RevModPhys.68.1259
  2. 2.
    T. Pöschel, S. Luding (eds.), in Granular Gases (Springer, Berlin, 2001)Google Scholar
  3. 3.
    P.G. de Gennes, Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999).  https://doi.org/10.1103/RevModPhys.71.S374
  4. 4.
    L. Landau, E. Lifshitz, in Fluid Mechanics. Course of Theoretical Physics, vol. 6. (Pergamon Press, Oxford, 1987)Google Scholar
  5. 5.
    H. Janssen, Versuche über getreidedruck in silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39(35), 1045–1049 (1895)Google Scholar
  6. 6.
    T.S. Majmudar, R.P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005).  https://doi.org/10.1038/nature03805ADSCrossRefGoogle Scholar
  7. 7.
    R. Brown, J. Richards, in Principles of Powder Mechanics (Pergamon Press, Oxford, 1970)Google Scholar
  8. 8.
    D.M. Mueth, H.M. Jaeger, S.R. Nagel, Force distribution in a granular medium. Phys. Rev. E 57(3), 3164 (1998).  https://doi.org/10.1103/PhysRevE.57.3164ADSCrossRefGoogle Scholar
  9. 9.
    C.-H. Liu, S.R. Nagel, Sound in sand. Phys. Rev. Lett. 68(15), 2301 (1992).  https://doi.org/10.1103/PhysRevLett.68.2301
  10. 10.
    C.-H. Liu, S.R. Nagel, Sound in a granular material: disorder and nonlinearity. Phys. Rev. B 48(21), 15646 (1993).  https://doi.org/10.1103/PhysRevB.48.15646ADSCrossRefGoogle Scholar
  11. 11.
    J. Tang, Junyao Tang’ Home Page, Duke University. http://webhome.phy.duke.edu/~jt41/research.html#granular
  12. 12.
    W. Beverloo, H. Leniger, J. van de Velde, The flow of granular solids through orifices. Chem. Eng. Sci. 15(3), 260–269 (1961).  https://doi.org/10.1016/0009-2509(61)85030-6CrossRefGoogle Scholar
  13. 13.
    K. To, P.-Y. Lai, H.K. Pak, Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71–74 (2001).  https://doi.org/10.1103/PhysRevLett.86.71
  14. 14.
    J. Tang, R. Behringer, How granular materials jam in a hopper. Chaos-Woodbury 21(4), 041107 (2011).  https://doi.org/10.1063/1.3669495CrossRefGoogle Scholar
  15. 15.
    J. Tang, S. Sagdiphour, R.P. Behringer, Jamming and flow in 2d hoppers. AIP Conf. Proc. 1145(1), 515–518 (2009).  https://doi.org/10.1063/1.3179975ADSCrossRefGoogle Scholar
  16. 16.
    M. Cates, J. Wittmer, J.-P. Bouchaud, Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841 (1998).  https://doi.org/10.1103/PhysRevLett.81.1841
  17. 17.
    W.T. Kranz, M. Sperl, A. Zippelius, Glass transition for driven granular fluids. Phys. Rev. Lett. 104, 225701 (2010).  https://doi.org/10.1103/PhysRevLett.104.225701
  18. 18.
    A.J. Liu, S.R. Nagel, Nonlinear dynamics: Jamming is not just cool any more. Nature 396(6706), 21–22 (1998).  https://doi.org/10.1038/23819ADSCrossRefGoogle Scholar
  19. 19.
    L.E. Silbert, D. Ertas̨ G.S. Grest, T.C. Halsey, D. Levine, Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E 65, 051307 (2002).  https://doi.org/10.1103/PhysRevE.65.051307ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    O. Dauchot, G. Marty, G. Biroli, Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95, 265701 (2005).  https://doi.org/10.1103/PhysRevLett.95.265701
  21. 21.
    T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007).  https://doi.org/10.1103/PhysRevLett.98.058001
  22. 22.
    A. Puglisi, in Transport and Fluctuations in Granular Fluids (Springer, Berlin, 2014)Google Scholar
  23. 23.
    D. Howell, R.P. Behringer, C. Veje, Stress fluctuations in a 2d granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999).  https://doi.org/10.1103/PhysRevLett.82.5241
  24. 24.
    R. Khosropour, J. Zirinsky, H.K. Pak, R.P. Behringer, Convection and size segregation in a Couette flow of granular material. Phys. Rev. E 56, 4467–4473 (1997).  https://doi.org/10.1103/PhysRevE.56.4467ADSCrossRefGoogle Scholar
  25. 25.
    D.A. Huerta, Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett. 92, 114301 (2004).  https://doi.org/10.1103/PhysRevLett.92.114301
  26. 26.
    M.E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, Brazil-nut effect: size separation of granular particles. Nature 414(6861), 270–270 (2001).  https://doi.org/10.1038/35104697ADSCrossRefGoogle Scholar
  27. 27.
    I.S. Aranson, L.S. Tsimring, Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006).  https://doi.org/10.1103/RevModPhys.78.641
  28. 28.
    K. Kim, H.K. Pak, Coarsening dynamics of striped patterns in thin granular layers under vertical vibration. Phys. Rev. Lett. 88, 204303 (2002).  https://doi.org/10.1103/PhysRevLett.88.204303
  29. 29.
    F. Melo, P. Umbanhowar, H.L. Swinney, Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72, 172–175 (1994).  https://doi.org/10.1103/PhysRevLett.72.172
  30. 30.
    F. Melo, P.B. Umbanhowar, H.L. Swinney, Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995).  https://doi.org/10.1103/PhysRevLett.75.3838
  31. 31.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Localized excitations in a vertically vibrated granular layer. Nature 382(6594), 793–796 (1996). https://search.proquest.com/docview/204462031?accountid=13698,  https://doi.org/10.1038/382793a0 (29 Aug 1996)
  32. 32.
    I. Goldhirsch, G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993).  https://doi.org/10.1103/PhysRevLett.70.1619
  33. 33.
    E. Falcon, R. Wunenburger, P. Évesque, S. Fauve, C. Chabot, Y. Garrabos, D. Beysens, Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440–443 (1999).  https://doi.org/10.1103/PhysRevLett.83.440
  34. 34.
    E. Falcon, S. Fauve, C. Laroche, Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations. Eur. Phys. J. B - Condens. Matter Complex Syst. 9(2), 183–186 (1999).  https://doi.org/10.1007/s100510050755
  35. 35.
    A. Kudrolli, J. Henry, Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489–R1492 (2000).  https://doi.org/10.1103/PhysRevE.62.R1489ADSCrossRefGoogle Scholar
  36. 36.
    A. Kudrolli, M. Wolpert, J.P. Gollub, Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997).  https://doi.org/10.1103/PhysRevLett.78.1383
  37. 37.
    T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015).  https://doi.org/10.1103/PhysRevE.91.042310
  38. 38.
    J.S. Olafsen, J.S. Urbach, Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998).  https://doi.org/10.1103/PhysRevLett.81.4369
  39. 39.
    J.S. Olafsen, J.S. Urbach, Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60, R2468–R2471 (1999).  https://doi.org/10.1103/PhysRevE.60.R2468ADSCrossRefGoogle Scholar
  40. 40.
    A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848–3851 (1998).  https://doi.org/10.1103/PhysRevLett.81.3848
  41. 41.
    S. McNamara, W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A Fluid Dyn. 4(3), 496–504 (1992).  https://doi.org/10.1063/1.858323ADSCrossRefGoogle Scholar
  42. 42.
    S. McNamara, W.R. Young, Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1994).  https://doi.org/10.1103/PhysRevE.50.R28ADSCrossRefGoogle Scholar
  43. 43.
    W. Losert, D. Cooper, J. Delour, A. Kudrolli, J. Gollub, Velocity statistics in excited granular media. chaos: an interdisciplinary. J. Nonlinear Sci. 9(3), 682–690 (1999).  https://doi.org/10.1063/1.166442CrossRefzbMATHGoogle Scholar
  44. 44.
    T. van Noije, M. Ernst, Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998).  https://doi.org/10.1007/s100350050009CrossRefGoogle Scholar
  45. 45.
    D.L. Blair, A. Kudrolli, Velocity correlations in dense granular gases. Phys. Rev. E 64, 050301 (2001).  https://doi.org/10.1103/PhysRevE.64.050301ADSCrossRefGoogle Scholar
  46. 46.
    G. Gradenigo, A. Sarracino, D. Villamaina, A. Puglisi, Fluctuating hydrodynamics and correlation lengths in a driven granular fluid. J. Stat. Mech. (Theor. Exp.) 2011(08), P08017 (2011). http://stacks.iop.org/1742-5468/2011/i=08/a=P08017,  https://doi.org/10.1088/1742-5468/2011/08/P08017
  47. 47.
    A. Puglisi, A. Gnoli, G. Gradenigo, A. Sarracino, D. Villamaina, Structure factors in granular experiments with homogeneous fluidization. J. Chem. Phys. 136(1), 014704 (2012).  https://doi.org/10.1063/1.3673876ADSCrossRefGoogle Scholar
  48. 48.
    G. Pontuale, A. Gnoli, F.V. Reyes, A. Puglisi, Thermal convection in granular gases with dissipative lateral walls. Phys. Rev. Lett. 117, 098006 (2016).  https://doi.org/10.1103/PhysRevLett.117.098006
  49. 49.
    S.T. Thoroddsen, A.Q. Shen, Granular jets. Phys. Fluids 13(1), 4–6 (2001).  https://doi.org/10.1063/1.1328359ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    A. Baldassarri, F. Dalton, A. Petri, S. Zapperi, G. Pontuale, L. Pietronero, Brownian forces in sheared granular matter. Phys. Rev. Lett. 96, 118002 (2006).  https://doi.org/10.1103/PhysRevLett.96.118002
  51. 51.
    J. Krim, P. Yu, R.P. Behringer, Stick-slip and the transition to steady sliding in a 2d granular medium and a fixed particle lattice. Pure Appl. Geophys. 168(12), 2259–2275 (2011).  https://doi.org/10.1007/s00024-011-0364-5ADSCrossRefGoogle Scholar
  52. 52.
    P. Eshuis, K. van der Weele, D. van der Meer, Granular leidenfrost effect: experiment and theory of floating particle clusters. Phys. Rev. Lett. 95, 258001 (2005).  https://doi.org/10.1103/PhysRevLett.95.258001
  53. 53.
    J.J. Brey, A. Prados, Memory effects in vibrated granular systems. J. Phys. Condens. Matter 14(7), 1489 (2002). http://stacks.iop.org/0953-8984/14/i=7/a=307,  https://doi.org/10.1088/0953-8984/14/7/307
  54. 54.
    C. Josserand, A.V. Tkachenko, D.M. Mueth, H.M. Jaeger, Memory effects in granular materials. Phys. Rev. Lett. 85, 3632–3635 (2000).  https://doi.org/10.1103/PhysRevLett.85.3632
  55. 55.
    A. Prados, E. Trizac, Kovacs-like memory effect in driven granular gases. Phys. Rev. Lett. 112, 198001 (2014).  https://doi.org/10.1103/PhysRevLett.112.198001
  56. 56.
    G. Costantini, A. Puglisi, U.B.M. Marconi, Models of granular ratchets. J. Stat. Mech. (Theor. Exp.) 2009(07), P07004 (2009). http://stacks.iop.org/1742-5468/2009/i=07/a=P07004,  https://doi.org/10.1088/1742-5468/2009/07/P07004
  57. 57.
    G. Costantini, U.M.B. Marconi, A. Puglisi, Granular Brownian ratchet model. Phys. Rev. E 75, 061124 (2007).  https://doi.org/10.1103/PhysRevE.75.061124ADSCrossRefGoogle Scholar
  58. 58.
    P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Experimental realization of a rotational ratchet in a granular gas. Phys. Rev. Lett. 104, 248001 (2010).  https://doi.org/10.1103/PhysRevLett.104.248001
  59. 59.
    A. Manacorda, A. Puglisi, A. Sarracino, Coulomb friction driving Brownian motors. Commun. Theor. Phys. 62(4), 505 (2014). http://stacks.iop.org/0253-6102/62/i=4/a=08,  https://doi.org/10.1088/0253-6102/62/4/08
  60. 60.
    S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634–1646 (1994).  https://doi.org/10.1103/PhysRevE.49.1634ADSCrossRefGoogle Scholar
  61. 61.
    S. Warr, J.M. Huntley, G.T.H. Jacques, Fluidization of a two-dimensional granular system: experimental study and scaling behavior. Phys. Rev. E 52, 5583–5595 (1995).  https://doi.org/10.1103/PhysRevE.52.5583ADSCrossRefGoogle Scholar
  62. 62.
    R.D. Wildman, J.M. Huntley, J.-P. Hansen, Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys. Rev. E 60, 7066–7075 (1999).  https://doi.org/10.1103/PhysRevE.60.7066ADSCrossRefGoogle Scholar
  63. 63.
    T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3–4), 71–140 (2012). http://www.sciencedirect.com/science/article/pii/S0370157312000968,  https://doi.org/10.1016/j.physrep.2012.03.004
  64. 64.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).  https://doi.org/10.1103/RevModPhys.88.045006
  65. 65.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).  https://doi.org/10.1103/RevModPhys.85.1143
  66. 66.
    S. Ramaswamy, The mechanics and statistics of active matter. Ann. Rev. Condens. Matter Phys. 1(1), 323–345 (2010).  https://doi.org/10.1146/annurev-conmatphys-070909-104101ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).  https://doi.org/10.1103/PhysRevLett.110.238301
  68. 68.
    Y. Fily, M.C. Marchetti, Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012).  https://doi.org/10.1103/PhysRevLett.108.235702
  69. 69.
    G.S. Redner, M.F. Hagan, Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013).  https://doi.org/10.1103/PhysRevLett.110.055701
  70. 70.
    M.J. Schnitzer, Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993).  https://doi.org/10.1103/PhysRevE.48.2553ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    M.E. Cates, J. Tailleur, Motility-induced phase separation. Ann. Rev. Condens. Matter Phys. 6(1), 219–244 (2015).  https://doi.org/10.1146/annurev-conmatphys-031214-014710ADSCrossRefGoogle Scholar
  72. 72.
    E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971). http://www.sciencedirect.com/science/article/pii/0022519371900506,  https://doi.org/10.1016/0022-5193(71)90050-6
  73. 73.
    L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler, Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43(5), 737–753 (2007).  https://doi.org/10.1007/s00348-007-0387-yCrossRefGoogle Scholar
  74. 74.
    Y. Wu, A.D. Kaiser, Y. Jiang, M.S. Alber, Periodic reversal of direction allows myxobacteria to swarm. Proc. Natl. Acad. Sci. 106(4), 1222–1227 (2009). http://www.pnas.org/content/106/4/1222.abstract,  https://doi.org/10.1073/pnas.0811662106
  75. 75.
    D. Hoare, I. Couzin, J.-G. Godin, J. Krause, Context-dependent group size choice in fish. Anim. Behav. 67(1), 155–164 (2004). http://www.sciencedirect.com/science/article/pii/S0003347203003580,  https://doi.org/10.1016/j.anbehav.2003.04.004
  76. 76.
    C. Becco, N. Vandewalle, J. Delcourt, P. Poncin, Experimental evidences of a structural and dynamical transition in fish school. Phys. A Stat. Mech. Appl. 367, 487–493 (2006). http://www.sciencedirect.com/science/article/pii/S0378437105012689,  https://doi.org/10.1016/j.physa.2005.11.041
  77. 77.
    Y. Katz, K. Tunstrøm, C.C. Ioannou, C. Huepe, I.D. Couzin, Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. 108(46), 18720–18725 (2011).  https://doi.org/10.1073/pnas.1107583108ADSCrossRefGoogle Scholar
  78. 78.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008).  https://doi.org/10.1073/pnas.0711437105ADSCrossRefGoogle Scholar
  79. 79.
    J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006). http://science.sciencemag.org/content/312/5778/1402,  https://doi.org/10.1126/science.1125142
  80. 80.
    A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. 107(26), 11865–11870 (2010).  https://doi.org/10.1073/pnas.1005766107ADSCrossRefGoogle Scholar
  81. 81.
    D. Helbing, J. Keltsch, P. Molnar, Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997).  https://doi.org/10.1038/40353ADSCrossRefGoogle Scholar
  82. 82.
    D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000).  https://doi.org/10.1038/35035023ADSCrossRefGoogle Scholar
  83. 83.
    J.J. Faria, J.R. Dyer, C.R. Tosh, Leadership and social information use in human crowds. Anim. Behav. 79(4), 895–901 (2010). http://www.sciencedirect.com/science/article/pii/S0003347210000047,  https://doi.org/10.1016/j.anbehav.2009.12.039
  84. 84.
    A. Cavagna, I. Giardina, Bird flocks as condensed matter. Ann. Rev. Condens. Matter Phys. 5(1), 183–207 (2014).  https://doi.org/10.1146/annurev-conmatphys-031113-133834ADSCrossRefGoogle Scholar
  85. 85.
    V. Narayan, N. Menon, S. Ramaswamy, Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic, and smectic correlations. J. Stat. Mech. (Theor. Exp.) 2006(01), P01005 (2006). http://stacks.iop.org/1742-5468/2006/i=01/a=P01005,  https://doi.org/10.1088/1742-5468/2006/01/P01005
  86. 86.
    K. Sugawara, M. Sano, T. Mizuguchi, Y. Hayakawa, Collective motion of multi-robot system based on simple dynamics, Human Robot Interaction (INTECH Open Access Publisher, 2007).  https://doi.org/10.5772/5202
  87. 87.
    A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008).  https://doi.org/10.1103/PhysRevLett.100.058001

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SapienzaRomeItaly

Personalised recommendations