Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 298 Accesses

Abstract

Granular and active matter are among the most studied systems in out of equilibrium statistical physics.

Like lesser birds on the four winds

Like silver scrapes in May

Now the sands become a crust

And most of you have gone away

(Blue Öyster Cult)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996). https://doi.org/10.1103/RevModPhys.68.1259

  2. T. Pöschel, S. Luding (eds.), in Granular Gases (Springer, Berlin, 2001)

    Google Scholar 

  3. P.G. de Gennes, Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999). https://doi.org/10.1103/RevModPhys.71.S374

  4. L. Landau, E. Lifshitz, in Fluid Mechanics. Course of Theoretical Physics, vol. 6. (Pergamon Press, Oxford, 1987)

    Google Scholar 

  5. H. Janssen, Versuche über getreidedruck in silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39(35), 1045–1049 (1895)

    Google Scholar 

  6. T.S. Majmudar, R.P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005). https://doi.org/10.1038/nature03805

    Article  ADS  Google Scholar 

  7. R. Brown, J. Richards, in Principles of Powder Mechanics (Pergamon Press, Oxford, 1970)

    Google Scholar 

  8. D.M. Mueth, H.M. Jaeger, S.R. Nagel, Force distribution in a granular medium. Phys. Rev. E 57(3), 3164 (1998). https://doi.org/10.1103/PhysRevE.57.3164

    Article  ADS  Google Scholar 

  9. C.-H. Liu, S.R. Nagel, Sound in sand. Phys. Rev. Lett. 68(15), 2301 (1992). https://doi.org/10.1103/PhysRevLett.68.2301

  10. C.-H. Liu, S.R. Nagel, Sound in a granular material: disorder and nonlinearity. Phys. Rev. B 48(21), 15646 (1993). https://doi.org/10.1103/PhysRevB.48.15646

    Article  ADS  Google Scholar 

  11. J. Tang, Junyao Tang’ Home Page, Duke University. http://webhome.phy.duke.edu/~jt41/research.html#granular

  12. W. Beverloo, H. Leniger, J. van de Velde, The flow of granular solids through orifices. Chem. Eng. Sci. 15(3), 260–269 (1961). https://doi.org/10.1016/0009-2509(61)85030-6

    Article  Google Scholar 

  13. K. To, P.-Y. Lai, H.K. Pak, Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71–74 (2001). https://doi.org/10.1103/PhysRevLett.86.71

  14. J. Tang, R. Behringer, How granular materials jam in a hopper. Chaos-Woodbury 21(4), 041107 (2011). https://doi.org/10.1063/1.3669495

    Article  Google Scholar 

  15. J. Tang, S. Sagdiphour, R.P. Behringer, Jamming and flow in 2d hoppers. AIP Conf. Proc. 1145(1), 515–518 (2009). https://doi.org/10.1063/1.3179975

    Article  ADS  Google Scholar 

  16. M. Cates, J. Wittmer, J.-P. Bouchaud, Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841 (1998). https://doi.org/10.1103/PhysRevLett.81.1841

  17. W.T. Kranz, M. Sperl, A. Zippelius, Glass transition for driven granular fluids. Phys. Rev. Lett. 104, 225701 (2010). https://doi.org/10.1103/PhysRevLett.104.225701

  18. A.J. Liu, S.R. Nagel, Nonlinear dynamics: Jamming is not just cool any more. Nature 396(6706), 21–22 (1998). https://doi.org/10.1038/23819

    Article  ADS  Google Scholar 

  19. L.E. Silbert, D. Ertas̨ G.S. Grest, T.C. Halsey, D. Levine, Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E 65, 051307 (2002). https://doi.org/10.1103/PhysRevE.65.051307

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Dauchot, G. Marty, G. Biroli, Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95, 265701 (2005). https://doi.org/10.1103/PhysRevLett.95.265701

  21. T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007). https://doi.org/10.1103/PhysRevLett.98.058001

  22. A. Puglisi, in Transport and Fluctuations in Granular Fluids (Springer, Berlin, 2014)

    Google Scholar 

  23. D. Howell, R.P. Behringer, C. Veje, Stress fluctuations in a 2d granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999). https://doi.org/10.1103/PhysRevLett.82.5241

  24. R. Khosropour, J. Zirinsky, H.K. Pak, R.P. Behringer, Convection and size segregation in a Couette flow of granular material. Phys. Rev. E 56, 4467–4473 (1997). https://doi.org/10.1103/PhysRevE.56.4467

    Article  ADS  Google Scholar 

  25. D.A. Huerta, Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett. 92, 114301 (2004). https://doi.org/10.1103/PhysRevLett.92.114301

  26. M.E. Möbius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger, Brazil-nut effect: size separation of granular particles. Nature 414(6861), 270–270 (2001). https://doi.org/10.1038/35104697

    Article  ADS  Google Scholar 

  27. I.S. Aranson, L.S. Tsimring, Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006). https://doi.org/10.1103/RevModPhys.78.641

  28. K. Kim, H.K. Pak, Coarsening dynamics of striped patterns in thin granular layers under vertical vibration. Phys. Rev. Lett. 88, 204303 (2002). https://doi.org/10.1103/PhysRevLett.88.204303

  29. F. Melo, P. Umbanhowar, H.L. Swinney, Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72, 172–175 (1994). https://doi.org/10.1103/PhysRevLett.72.172

  30. F. Melo, P.B. Umbanhowar, H.L. Swinney, Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3841 (1995). https://doi.org/10.1103/PhysRevLett.75.3838

  31. P.B. Umbanhowar, F. Melo, H.L. Swinney, Localized excitations in a vertically vibrated granular layer. Nature 382(6594), 793–796 (1996). https://search.proquest.com/docview/204462031?accountid=13698, https://doi.org/10.1038/382793a0 (29 Aug 1996)

  32. I. Goldhirsch, G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993). https://doi.org/10.1103/PhysRevLett.70.1619

  33. E. Falcon, R. Wunenburger, P. Évesque, S. Fauve, C. Chabot, Y. Garrabos, D. Beysens, Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440–443 (1999). https://doi.org/10.1103/PhysRevLett.83.440

  34. E. Falcon, S. Fauve, C. Laroche, Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations. Eur. Phys. J. B - Condens. Matter Complex Syst. 9(2), 183–186 (1999). https://doi.org/10.1007/s100510050755

  35. A. Kudrolli, J. Henry, Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489–R1492 (2000). https://doi.org/10.1103/PhysRevE.62.R1489

    Article  ADS  Google Scholar 

  36. A. Kudrolli, M. Wolpert, J.P. Gollub, Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997). https://doi.org/10.1103/PhysRevLett.78.1383

  37. T.F.F. Farage, P. Krinninger, J.M. Brader, Effective interactions in active Brownian suspensions. Phys. Rev. E 91, 042310 (2015). https://doi.org/10.1103/PhysRevE.91.042310

  38. J.S. Olafsen, J.S. Urbach, Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998). https://doi.org/10.1103/PhysRevLett.81.4369

  39. J.S. Olafsen, J.S. Urbach, Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60, R2468–R2471 (1999). https://doi.org/10.1103/PhysRevE.60.R2468

    Article  ADS  Google Scholar 

  40. A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848–3851 (1998). https://doi.org/10.1103/PhysRevLett.81.3848

  41. S. McNamara, W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A Fluid Dyn. 4(3), 496–504 (1992). https://doi.org/10.1063/1.858323

    Article  ADS  Google Scholar 

  42. S. McNamara, W.R. Young, Inelastic collapse in two dimensions. Phys. Rev. E 50, R28–R31 (1994). https://doi.org/10.1103/PhysRevE.50.R28

    Article  ADS  Google Scholar 

  43. W. Losert, D. Cooper, J. Delour, A. Kudrolli, J. Gollub, Velocity statistics in excited granular media. chaos: an interdisciplinary. J. Nonlinear Sci. 9(3), 682–690 (1999). https://doi.org/10.1063/1.166442

    Article  MATH  Google Scholar 

  44. T. van Noije, M. Ernst, Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998). https://doi.org/10.1007/s100350050009

    Article  Google Scholar 

  45. D.L. Blair, A. Kudrolli, Velocity correlations in dense granular gases. Phys. Rev. E 64, 050301 (2001). https://doi.org/10.1103/PhysRevE.64.050301

    Article  ADS  Google Scholar 

  46. G. Gradenigo, A. Sarracino, D. Villamaina, A. Puglisi, Fluctuating hydrodynamics and correlation lengths in a driven granular fluid. J. Stat. Mech. (Theor. Exp.) 2011(08), P08017 (2011). http://stacks.iop.org/1742-5468/2011/i=08/a=P08017, https://doi.org/10.1088/1742-5468/2011/08/P08017

  47. A. Puglisi, A. Gnoli, G. Gradenigo, A. Sarracino, D. Villamaina, Structure factors in granular experiments with homogeneous fluidization. J. Chem. Phys. 136(1), 014704 (2012). https://doi.org/10.1063/1.3673876

    Article  ADS  Google Scholar 

  48. G. Pontuale, A. Gnoli, F.V. Reyes, A. Puglisi, Thermal convection in granular gases with dissipative lateral walls. Phys. Rev. Lett. 117, 098006 (2016). https://doi.org/10.1103/PhysRevLett.117.098006

  49. S.T. Thoroddsen, A.Q. Shen, Granular jets. Phys. Fluids 13(1), 4–6 (2001). https://doi.org/10.1063/1.1328359

    Article  ADS  MATH  Google Scholar 

  50. A. Baldassarri, F. Dalton, A. Petri, S. Zapperi, G. Pontuale, L. Pietronero, Brownian forces in sheared granular matter. Phys. Rev. Lett. 96, 118002 (2006). https://doi.org/10.1103/PhysRevLett.96.118002

  51. J. Krim, P. Yu, R.P. Behringer, Stick-slip and the transition to steady sliding in a 2d granular medium and a fixed particle lattice. Pure Appl. Geophys. 168(12), 2259–2275 (2011). https://doi.org/10.1007/s00024-011-0364-5

    Article  ADS  Google Scholar 

  52. P. Eshuis, K. van der Weele, D. van der Meer, Granular leidenfrost effect: experiment and theory of floating particle clusters. Phys. Rev. Lett. 95, 258001 (2005). https://doi.org/10.1103/PhysRevLett.95.258001

  53. J.J. Brey, A. Prados, Memory effects in vibrated granular systems. J. Phys. Condens. Matter 14(7), 1489 (2002). http://stacks.iop.org/0953-8984/14/i=7/a=307, https://doi.org/10.1088/0953-8984/14/7/307

  54. C. Josserand, A.V. Tkachenko, D.M. Mueth, H.M. Jaeger, Memory effects in granular materials. Phys. Rev. Lett. 85, 3632–3635 (2000). https://doi.org/10.1103/PhysRevLett.85.3632

  55. A. Prados, E. Trizac, Kovacs-like memory effect in driven granular gases. Phys. Rev. Lett. 112, 198001 (2014). https://doi.org/10.1103/PhysRevLett.112.198001

  56. G. Costantini, A. Puglisi, U.B.M. Marconi, Models of granular ratchets. J. Stat. Mech. (Theor. Exp.) 2009(07), P07004 (2009). http://stacks.iop.org/1742-5468/2009/i=07/a=P07004, https://doi.org/10.1088/1742-5468/2009/07/P07004

  57. G. Costantini, U.M.B. Marconi, A. Puglisi, Granular Brownian ratchet model. Phys. Rev. E 75, 061124 (2007). https://doi.org/10.1103/PhysRevE.75.061124

    Article  ADS  Google Scholar 

  58. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Experimental realization of a rotational ratchet in a granular gas. Phys. Rev. Lett. 104, 248001 (2010). https://doi.org/10.1103/PhysRevLett.104.248001

  59. A. Manacorda, A. Puglisi, A. Sarracino, Coulomb friction driving Brownian motors. Commun. Theor. Phys. 62(4), 505 (2014). http://stacks.iop.org/0253-6102/62/i=4/a=08, https://doi.org/10.1088/0253-6102/62/4/08

  60. S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634–1646 (1994). https://doi.org/10.1103/PhysRevE.49.1634

    Article  ADS  Google Scholar 

  61. S. Warr, J.M. Huntley, G.T.H. Jacques, Fluidization of a two-dimensional granular system: experimental study and scaling behavior. Phys. Rev. E 52, 5583–5595 (1995). https://doi.org/10.1103/PhysRevE.52.5583

    Article  ADS  Google Scholar 

  62. R.D. Wildman, J.M. Huntley, J.-P. Hansen, Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys. Rev. E 60, 7066–7075 (1999). https://doi.org/10.1103/PhysRevE.60.7066

    Article  ADS  Google Scholar 

  63. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3–4), 71–140 (2012). http://www.sciencedirect.com/science/article/pii/S0370157312000968, https://doi.org/10.1016/j.physrep.2012.03.004

  64. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006

  65. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013). https://doi.org/10.1103/RevModPhys.85.1143

  66. S. Ramaswamy, The mechanics and statistics of active matter. Ann. Rev. Condens. Matter Phys. 1(1), 323–345 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104101

    Article  ADS  MathSciNet  Google Scholar 

  67. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/PhysRevLett.110.238301

  68. Y. Fily, M.C. Marchetti, Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012). https://doi.org/10.1103/PhysRevLett.108.235702

  69. G.S. Redner, M.F. Hagan, Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013). https://doi.org/10.1103/PhysRevLett.110.055701

  70. M.J. Schnitzer, Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993). https://doi.org/10.1103/PhysRevE.48.2553

    Article  ADS  MathSciNet  Google Scholar 

  71. M.E. Cates, J. Tailleur, Motility-induced phase separation. Ann. Rev. Condens. Matter Phys. 6(1), 219–244 (2015). https://doi.org/10.1146/annurev-conmatphys-031214-014710

    Article  ADS  Google Scholar 

  72. E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971). http://www.sciencedirect.com/science/article/pii/0022519371900506, https://doi.org/10.1016/0022-5193(71)90050-6

  73. L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler, Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43(5), 737–753 (2007). https://doi.org/10.1007/s00348-007-0387-y

    Article  Google Scholar 

  74. Y. Wu, A.D. Kaiser, Y. Jiang, M.S. Alber, Periodic reversal of direction allows myxobacteria to swarm. Proc. Natl. Acad. Sci. 106(4), 1222–1227 (2009). http://www.pnas.org/content/106/4/1222.abstract, https://doi.org/10.1073/pnas.0811662106

  75. D. Hoare, I. Couzin, J.-G. Godin, J. Krause, Context-dependent group size choice in fish. Anim. Behav. 67(1), 155–164 (2004). http://www.sciencedirect.com/science/article/pii/S0003347203003580, https://doi.org/10.1016/j.anbehav.2003.04.004

  76. C. Becco, N. Vandewalle, J. Delcourt, P. Poncin, Experimental evidences of a structural and dynamical transition in fish school. Phys. A Stat. Mech. Appl. 367, 487–493 (2006). http://www.sciencedirect.com/science/article/pii/S0378437105012689, https://doi.org/10.1016/j.physa.2005.11.041

  77. Y. Katz, K. Tunstrøm, C.C. Ioannou, C. Huepe, I.D. Couzin, Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. 108(46), 18720–18725 (2011). https://doi.org/10.1073/pnas.1107583108

    Article  ADS  Google Scholar 

  78. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105

    Article  ADS  Google Scholar 

  79. J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006). http://science.sciencemag.org/content/312/5778/1402, https://doi.org/10.1126/science.1125142

  80. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. 107(26), 11865–11870 (2010). https://doi.org/10.1073/pnas.1005766107

    Article  ADS  Google Scholar 

  81. D. Helbing, J. Keltsch, P. Molnar, Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997). https://doi.org/10.1038/40353

    Article  ADS  Google Scholar 

  82. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000). https://doi.org/10.1038/35035023

    Article  ADS  Google Scholar 

  83. J.J. Faria, J.R. Dyer, C.R. Tosh, Leadership and social information use in human crowds. Anim. Behav. 79(4), 895–901 (2010). http://www.sciencedirect.com/science/article/pii/S0003347210000047, https://doi.org/10.1016/j.anbehav.2009.12.039

  84. A. Cavagna, I. Giardina, Bird flocks as condensed matter. Ann. Rev. Condens. Matter Phys. 5(1), 183–207 (2014). https://doi.org/10.1146/annurev-conmatphys-031113-133834

    Article  ADS  Google Scholar 

  85. V. Narayan, N. Menon, S. Ramaswamy, Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic, and smectic correlations. J. Stat. Mech. (Theor. Exp.) 2006(01), P01005 (2006). http://stacks.iop.org/1742-5468/2006/i=01/a=P01005, https://doi.org/10.1088/1742-5468/2006/01/P01005

  86. K. Sugawara, M. Sano, T. Mizuguchi, Y. Hayakawa, Collective motion of multi-robot system based on simple dynamics, Human Robot Interaction (INTECH Open Access Publisher, 2007). https://doi.org/10.5772/5202

  87. A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008). https://doi.org/10.1103/PhysRevLett.100.058001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Manacorda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manacorda, A. (2018). Introduction. In: Lattice Models for Fluctuating Hydrodynamics in Granular and Active Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95080-8_1

Download citation

Publish with us

Policies and ethics