Skip to main content

Kinetics of Roasting of a Sphalerite Concentrate

  • Conference paper
  • First Online:
Extraction 2018

Abstract

In this research, both the kinetics and the mechanisms of the roasting of a sphalerite concentrate from the Bafgh mining complex in Iran were investigated. The oxidation process was performed in a muffle furnace in air and the effects of time and temperature on the degree of oxidation of the zinc sulfide sample were quantitatively studied. The experimental data were fitted to the shrinking core model . In the temperature range of 650–800 °C, the rate-controlling step was the chemical reaction between the zinc sulfide and oxygen with an activation energy of 103 kJ mol−1. On the other hand, in the temperature range of 850–950 °C, the rate-controlling step was oxygen diffusion with an activation energy of 50 kJ mol−1. Also, the roasting process was studied using thermogravimetric (TGA) and derivative thermogravimetric (DTGA) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kropschot SJ, Doebrich JL (2011) Zinc-the key to preventing corrosion (No. 2011–3016). US Geological Survey

    Google Scholar 

  2. International Lead and Zinc Study Group (2017). http://www.ilzsg.org/static

  3. Boyanov B, Peltekov A, Petkova V (2014) Thermal behavior of zinc sulfide concentrates with different iron content at oxidative roasting. Thermochim Acta 586:9–16

    Article  CAS  Google Scholar 

  4. Fukunaka Y, Monta T, Asaki Z, Kondo Y (1976) Oxidation of zinc sulfide in a fluidized bed. Metall Trans B 7:307–314

    Article  Google Scholar 

  5. Dimitrov R, Boyanev I (1986) Mechanism of zinc sulfide oxidation. Thermochim Acta 106:9–25

    Article  CAS  Google Scholar 

  6. Natesan K, Philbrook WO (1970) Oxidation kinetic studies of zinc sulfide in a fluidized bed. Met Trans (1):1353

    Google Scholar 

  7. Kimura S, Takagi Y, Tone S, Otake T (1983) Kinetic study of oxidation of pelleted zinc sulfide powder having grain size distribution. J Chem Eng Jpn 16(3):217–223

    Article  CAS  Google Scholar 

  8. Takamura T, Yoshida K, Kunii D (1974) Kinetic study of oxidation of zinc sulfide pellets. J Chem Eng Jpn 7:276–280

    Article  CAS  Google Scholar 

  9. Queiroz C, Carvalho R, Moura F (2005) Oxidation of zinc sulfide concentrate in a fluidised bed reactor-part 2: the influence of experimental variables on the kinetics. Braz J Chem Eng 22:127–133

    Article  CAS  Google Scholar 

  10. Boyanov B, Peltekov A (2013) Study of zinc sulfide concentrates by DTA, TGA, and X-Ray analyses and their roasting in fluidized bed furnace. ISRN Ind Eng 2013

    Google Scholar 

  11. Małecki S, Jarosz P (2014) thermogravimetric analysis of the zinc concentrates oxidation containing various iron compounds. Arch Metall Mater 59:941–945

    Article  Google Scholar 

  12. Kim B, Jeong S, Kim Y, Kim H (2010) Oxidative roasting of low grade zinc sulfide concentrates from Gagok mine in Korea. Mat Tran 51(8):1481–1485

    Article  CAS  Google Scholar 

  13. Živković Ž, Živković D, Grujičić D, Štrbac N, Savović V (1998) Kinetics and mechanism of the natural mineral marmatite oxidation process. J Therm Anal Calorim 54(1):35–40

    Article  Google Scholar 

  14. Levenspiel O (2006) Chemical reaction engineering, 3rd edn. Wiley India Pvt. Ltd.

    Google Scholar 

  15. Vignes A (2011) Extractive metallurgy 1. Wiley India Pvt. Ltd.

    Google Scholar 

  16. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  17. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A (2000) Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125–143

    Article  CAS  Google Scholar 

  18. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110(35):17315–17328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Marzoughi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marzoughi, O., Halali, M., Moradkhani, D., Pickles, C.A. (2018). Kinetics of Roasting of a Sphalerite Concentrate. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_44

Download citation

Publish with us

Policies and ethics