Skip to main content

Constraints on Simplified Dark Matter Models from Mono-X Searches

  • Chapter
  • First Online:
  • 274 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Collider searches for Dark Matter (DM) in events with large missing transverse energy (\(E_{\mathrm {T}}^{\mathrm {miss}}\)) have been commonly interpreted within effective field theory (EFT) models of DM pair production. The advantage of this approach is that limits derived in terms of an EFT are applicable to a broad range of complete theories and depend only on the specification of a few parameters, namely the cutoff scale, \(\Lambda \), and the DM mass, \(m_{\chi } \).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Couplings between the mediator and Standard Model leptons or gluons are generally possible and have been studied (e.g. [3, 13]) but are not considered here.

  2. 2.

    Only in the validation of the mono-\(Z\)(lep) channel Majorana DM is considered, see Sect. 8.2.4.

  3. 3.

    One of the first Run II Dark Matter search results from ATLAS was from this channel [34], released during the preparation of this study.

  4. 4.

    In this discussion, the mono-\(W/Z\)(had) channel can be assumed to follow the same logic as the mono-\(Z\)(lep) channel.

  5. 5.

    The CMS collaboration published similar analyses with comparable results. Only the ATLAS set of results were recast for this study.

  6. 6.

    Jets are seeded by any parton excluding the (anti-)top quark.

  7. 7.

    This signal region is the only one for which the ATLAS analysis publicly provided the EFT limits.

References

  1. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait, H.-B. Yu, Constraints on Dark Matter from Colliders. Phys. Rev. D 82, 116010 (2010). https://doi.org/10.1103/PhysRevD.82.116010, arXiv:1008.1783 [hep-ph]

  2. Y. Bai, P.J. Fox, R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection. JHEP 12, 048 (2010). https://doi.org/10.1007/JHEP12(2010)048, arXiv:1005.3797 [hep-ph]

  3. P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP Shines Light on Dark Matter. Phys. Rev. D 84, 014028 (2011). https://doi.org/10.1103/PhysRevD.84.014028, arXiv:1103.0240 [hep-ph]

  4. M. L. Graesser, I. M. Shoemaker, L. Vecchi, A Dark Force for Baryons, arXiv:1107.2666 [hep-ph]

  5. H. An, F. Gao, Fitting CoGeNT Modulation with an Inelastic, Isospin-Violating \(Z^{\prime }\) Model, arXiv:1108.3943 [hep-ph]

  6. O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC. JHEP 01, 025 (2014). https://doi.org/10.1007/JHEP01(2014)025, arXiv:1308.6799 [hep-ph]

  7. G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412–421 (2014). https://doi.org/10.1016/j.physletb.2013.11.069, arXiv:1307.2253 [hep-ph]

  8. G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the \(s\)-channel. JCAP 1406, 060 (2014). https://doi.org/10.1088/1475-7516/2014/06/060, arXiv:1402.1275 [hep-ph]

  9. G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the \(t\)-channel. JCAP 1409, 022 (2014). https://doi.org/10.1088/1475-7516/2014/09/022, arXiv:1405.3101 [hep-ph]

  10. A. DiFranzo, K.I. Nagao, A. Rajaraman, T.M.P. Tait, Simplified models for dark matter interacting with quarks. JHEP 11, 014 (2013). https://doi.org/10.1007/JHEP11(2013)014,162, arXiv:1308.2679 [hep-ph]

  11. M.R. Buckley, D. Feld, D. Goncalves, Scalar simplified models for dark matter. Phys. Rev. D 91, 015017 (2015). https://doi.org/10.1103/PhysRevD.91.015017, arXiv:1410.6497 [hep-ph]

  12. A.J. Brennan, M.F. McDonald, J. Gramling, T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches. JHEP 05, 112 (2016). https://doi.org/10.1007/JHEP05(2016)112, arXiv:1603.01366 [hep-ph]

  13. R.M. Godbole, G. Mendiratta, T.M.P. Tait, A simplified model for dark matter interacting primarily with gluons, JHEP08(2015) 064. https://doi.org/10.1007/JHEP08(2015)064, arXiv:1506.01408 [hep-ph]

  14. O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators. JHEP 01, 037 (2015). https://doi.org/10.1007/JHEP01(2015)037, arXiv:1407.8257 [hep-ph]

  15. M. Blennow, J. Herrero-Garcia, T. Schwetz, S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out. JCAP 1508(08), 039 (2015). https://doi.org/10.1088/1475-7516/2015/08/039, arXiv:1505.05710 [hep-ph]

  16. A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dark matter complementarity and the Z\(^\prime \) Portal. Phys. Rev. D 92(8), 083004 (2015). https://doi.org/10.1103/PhysRevD.92.083004, arXiv:1501.03490 [hep-ph]

  17. H. An, X. Ji, L.-T. Wang, Light Dark Matter and \(Z^{\prime }\) Dark force at colliders. JHEP 07, 182 (2012). https://doi.org/10.1007/JHEP07(2012)182, arXiv:1202.2894 [hep-ph]

  18. H. An, R. Huo, L.-T. Wang, Searching for low mass dark portal at the LHC. Phys. Dark Univ. 2, 50–57 (2013). https://doi.org/10.1016/j.dark.2013.03.002, arXiv:1212.2221 [hep-ph]

  19. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar, and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP07(2012) 123. https://doi.org/10.1007/JHEP07(2012)123, arXiv:1204.3839 [hep-ph]

  20. G. Arcadi, Y. Mambrini, M.H.G. Tytgat, and B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints,” JHEP03(2014) 134. https://doi.org/10.1007/JHEP03(2014)134, arXiv:1401.0221 [hep-ph]

  21. P. Harris, V.V. Khoze, M. Spannowsky, C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach. Phys. Rev. D 91, 055009 (2015). https://doi.org/10.1103/PhysRevD.91.055009. arXiv:1411.0535 [hep-ph]

    Article  ADS  Google Scholar 

  22. T. Jacques, K. Nordström, Mapping monojet constraints onto simplified dark matter models. JHEP 06, 142 (2015). https://doi.org/10.1007/JHEP06(2015)142, arXiv:1502.05721 [hep-ph]

  23. N.F. Bell, Y. Cai, R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis. JCAP 1601(01), 051 (2016). https://doi.org/10.1088/1475-7516/2016/01/051, arXiv:1512.00476 [hep-ph]

  24. M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets. JHEP 07(2015) 089. https://doi.org/10.1007/JHEP07(2015)089, arXiv:1503.05916 [hep-ph]

  25. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 02(2016) 016. https://doi.org/10.1007/JHEP02(2016)016, arXiv:1510.02110 [hep-ph]

  26. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept.267 (1996) 195–373. https://doi.org/10.1016/0370-1573(95)00058-5, arXiv:hep-ph/9506380 [hep-ph]

  27. Y. Baim, J. Berger, Fermion portal dark matter. JHEP 11, 171 (2013). https://doi.org/10.1007/JHEP11(2013)171, arXiv:1308.0612 [hep-ph]

  28. H. An, L.-T. Wang, H. Zhang, Dark matter with \(t\)-channel mediator: a simple step beyond contact interaction. Phys. Rev. D 89(11), 115014 (2014). https://doi.org/10.1103/PhysRevD.89.115014, arXiv:1308.0592 [hep-ph]

  29. S. Chang, R. Edezhath, J. Hutchinson, M. Luty, Effective WIMPs. Phys. Rev. D 89(1), 015011 (2014). https://doi.org/10.1103/PhysRevD.89.015011. arXiv:1307.8120 [hep-ph]

    Article  ADS  Google Scholar 

  30. M. Papucci, A. Vichi, K.M. Zurek, Monojet versus the rest of the world I: t-channel models. JHEP 11, 024 (2014). https://doi.org/10.1007/JHEP11(2014)024, arXiv:1402.2285 [hep-ph]

  31. M. Garny, A. Ibarra, S. Vogl, Signatures of Majorana dark matter with t-channel mediators. Int. J. Mod. Phys. D 24(07), 1530019 (2015). https://doi.org/10.1142/S0218271815300190, arXiv:1503.01500 [hep-ph]

  32. M. Garny, A. Ibarra, S. Rydbeck, S. Vogl, Majorana dark matter with a coloured mediator: collider vs direct and indirect searches. JHEP 06, 169 (2014). https://doi.org/10.1007/JHEP06(2014)169, arXiv:1403.4634 [hep-ph]

  33. N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss, T.J. Weiler, W/Z bremsstrahlung as the dominant annihilation channel for dark matter, revisited. Phys. Lett. B 706, 6–12 (2011). https://doi.org/10.1016/j.physletb.2011.10.057, arXiv:1104.3823 [hep-ph]

  34. ATLAS Collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector at the LHC, Techcnical Report ATLAS-CONF-2015-080, CERN, Geneva, Dec, 2015, http://cds.cern.ch/record/2114852

  35. P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012). https://doi.org/10.1103/PhysRevD.85.056011, arXiv:1109.4398 [hep-ph]

  36. P.J. Fox, R. Harnik, R. Primulando, C.-T. Yu, Taking a razor to dark matter parameter space at the LHC. Phys. Rev. D 86, 015010 (2012). https://doi.org/10.1103/PhysRevD.86.015010, arXiv:1203.1662 [hep-ph]

  37. ATLAS Collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \(\sqrt{s}=\)8 TeV with the ATLAS detector. Eur. Phys. J. C75(7), 299 (2015). https://doi.org/10.1140/epjc/s10052-015-3517-3https://doi.org/10.1140/epjc/s10052-015-3639-7, arXiv:1502.01518 [hep-ex]

  38. D. Abercrombie et al., Dark matter benchmark models for early lhc run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [hep-ex]

  39. DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02(2014) 057. https://doi.org/10.1007/JHEP02(2014)057, arXiv:1307.6346 [hep-ex]

  40. ATLAS Collaboration, G. Aad et al., Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \(\sqrt{s}\)=8 TeV with the ATLAS detector, Phys. Rev. D90(1), 012004 (2014). https://doi.org/10.1103/PhysRevD.90.012004, arXiv:1404.0051 [hep-ex]

  41. ATLAS Collaboration, G. Aad et al., Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector. Phys. Rev. Lett. 112(4), 041802 (2014). https://doi.org/10.1103/PhysRevLett.112.041802, arXiv:1309.4017 [hep-ex]

  42. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079, arXiv:1405.0301 [hep-ph]

  43. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). https://doi.org/10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002 [hep-ph]

  44. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012 [hep-ph]

  45. ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, http://cds.cern.ch/record/1474107

  46. M. Cacciari, G.P. Salam, G. Soyez, FastJet User Manual. Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097 [hep-ph]

  47. ATLAS Collaboration, G. Aad et al., Performance of jet substructure techniques for large-\(R\) jets in proton-proton collisions at \(\sqrt{s}\) = 7 TeV using the ATLAS detector, JHEP 09, 076 (2013). https://doi.org/10.1007/JHEP09(2013)076, arXiv:1306.4945 [hep-ex]

  48. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 01, 013 (2007), arXiv:hep-ph/0611129 [hep-ph]

  49. S. Schramm, P. Savard, Searching for dark matter with the ATLAS detector in events with an energetic jet and large missing transverse momentum. Ph.D. Thesis, Toronto U., Mar 2015, http://cds.cern.ch/record/2014029. Presented 26 Feb 2015

  50. P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C74(8), 3024 (2014). https://doi.org/10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630 [hep-ph]

  51. A. Wald, Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945). https://doi.org/10.1214/aoms/1177731118

  52. M. Baak, G.J. Besjes, D. Côte, A. Koutsman, J. Lorenz, D. Short, HistFitter software framework for statistical data analysis. Eur. Phys. J. C 75, 153 (2015). https://doi.org/10.1140/epjc/s10052-015-3327-7, arXiv:1410.1280 [hep-ex]

  53. N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane, T.J. Weiler, Dark matter at the LHC: effective field theories and gauge invariance. Phys. Rev. D 92(5), 053008 (2015). https://doi.org/10.1103/PhysRevD.92.053008. arXiv:1503.07874 [hep-ph]

    Article  ADS  Google Scholar 

  54. P.A.R. Planck, Collaboration, Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591. arXiv:1303.5076 [astro-ph.CO]

    Article  Google Scholar 

  55. G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). https://doi.org/10.1016/j.cpc.2015.03.003, arXiv:1407.6129 [hep-ph]

  56. M. Cirelli, E. Del Nobile, P. Panci, Tools for model-independent bounds in direct dark matter searches. JCAP 1310, 019 (2013). https://doi.org/10.1088/1475-7516/2013/10/019. arXiv:1307.5955 [hep-ph]

    Article  ADS  Google Scholar 

  57. L.U.X. Collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112, 091303 (2014). https://doi.org/10.1103/PhysRevLett.112.091303, arXiv:1310.8214 [astro-ph.CO]

  58. C.M.S. Collaboration, S. Chatrchyan et al., Search for narrow resonances using the dijet mass spectrum in pp collisions at \(\sqrt{s}\)=8 TeV. Phys. Rev. D 87(11), 114015 (2013). https://doi.org/10.1103/PhysRevD.87.114015, arXiv:1302.4794 [hep-ex]

  59. ATLAS Collaboration, G. Aad et al., Search for new phenomena in the dijet mass distribution using \(p-p\) collision data at \(\sqrt{s}=8\) TeV with the ATLAS detector, Phys. Rev. D 91(5), 052007 (2015). https://doi.org/10.1103/PhysRevD.91.052007, arXiv:1407.1376 [hep-ex]

  60. C.D.F. Collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. D 79, 112002 (2009). https://doi.org/10.1103/PhysRevD.79.112002, arXiv:0812.4036 [hep-ex]

  61. C.M.S. Collaboration, V. Khachatryan et al., Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \(\sqrt{s} =\) 8 TeV. Phys. Rev. D 91(5), 052009 (2015). https://doi.org/10.1103/PhysRevD.91.052009, arXiv:1501.04198 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Gramling .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gramling, J. (2018). Constraints on Simplified Dark Matter Models from Mono-X Searches. In: Search for Dark Matter with the ATLAS Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95016-7_8

Download citation

Publish with us

Policies and ethics