Skip to main content

The Review of the Major Entropy Methods and Applications in Biomedical Signal Research

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10847))

Included in the following conference series:

Abstract

Since biomedical signals are high dimensional data sets with a lot of noise signal, the results processed by the classical signal processing method are subjected to the impact of the noise and interference. Entropy as a measure of disorder or uncertainty in the data has been applied in signal processing research areas. This review is to introduce the application of entropy in the analysis of biomedical signals and discuss the advantages and shortcomings of various entropies. Especially, the utilization and application of entropy concept in cancer research are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, T., Dai, M., Xu, C., Fu, F., You, F., Dong, X.: Research on eit boundary measured voltage data denoising based on a subspace method. Biotechnol. Biotechnol. Equip. 27, 4157–4161 (2013)

    Article  Google Scholar 

  2. Enderle, J., Blanchard, S., Bronzino, J.: Introduction to Biomedical Engineering. Xi’an Jiaotong University Press (2010)

    Google Scholar 

  3. Goette, J.: Review of Various Biomedical Signals

    Google Scholar 

  4. Clausius, R.: Ueber die Wärmeleitung gasförmiger Körper. Annalen Der Physik 191, 1–56 (2010)

    Article  Google Scholar 

  5. Bao, R., Rong, H., Angelov, P.P., Chen, B., Wong, P.K.: Correntropy-based evolving fuzzy neural system. IEEE Trans. Fuzzy Syst. PP, 1 (2017)

    Google Scholar 

  6. Wang, W., Zhao, J., Qu, H., Chen, B.: A correntropy inspired variable step-size sign algorithm against impulsive noises. Sig. Process. 141, 168–175 (2017)

    Article  Google Scholar 

  7. Peng, S., Chen, B., Sun, L., Ser, W., Lin, Z.: Constrained maximum correntropy adaptive filtering. Sig. Process. 140, 116–126 (2017)

    Article  Google Scholar 

  8. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grassberger, P.: Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 128, 369–373 (1988)

    Article  MathSciNet  Google Scholar 

  10. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  11. Grassberger, P., Schreiber, T., Schaffrath, C.: Nonlinear time sequence analysis. Int. J. Bifurcat. Chaos 01, 9100040 (1991)

    Article  MATH  Google Scholar 

  12. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000)

    Article  Google Scholar 

  13. Yan, J.-J., Wang, Y.-Q., Guo, R., Zhou, J.-Z., Yan, H.-X., Xia, C.-M., Shen, Y.: Nonlinear analysis of auscultation signals in TCM using the combination of wavelet packet transform and sample entropy. Evid.-Based Complement. Altern. Med. 2012 (2012)

    Google Scholar 

  14. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Sig. Process. 55, 5286–5298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, B., Xing, L., Zhao, H., Zheng, N., Prıncipe, J.C.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Sig. Process. 64, 3376–3387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clausius, R.: On the Motive Power of Heat, and on the Laws Which Can Be Deduced From It for the Theory of Heat (1960)

    Google Scholar 

  17. Borowska, M.: Entropy-based algorithms in the analysis of biomedical signals. Stud. Log. Gramm. Rhetor. 43, 21–32 (2015)

    Article  Google Scholar 

  18. Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of non-equilibrium systems. Physica D 193, 53–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stephen, G.: Vorlesungen über Gastheorie. University of California Press (1964)

    Google Scholar 

  20. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  21. Li, J., Ning, X., Ma, O.: Nonlinear dynamical complexity analysis of short-term heartbeat series using joint entropy. J. Biomed. Eng. 24, 285–289 (2007)

    Google Scholar 

  22. Chen, W., Wang, Z., Xie, H., Yu, W.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 266 (2007)

    Article  Google Scholar 

  23. Liu, C., Zhao, L.: Using fuzzy measure entropy to improve the stability of traditional entropy measures. In: Computing in Cardiology, pp. 681–684. IEEE (2011)

    Google Scholar 

  24. Shannon, C.E.: The mathematical theory of communication. 1963. MD Comput. Med. Pract. 14, 306 (1997)

    Google Scholar 

  25. Shannon, C.E.: A mathematical theory of communication: the bell system technical journal. J. Franklin Inst. 196, 519–520 (1938)

    Google Scholar 

  26. Shannon, C.: A Mathematical Theory of Communication (1948)

    Google Scholar 

  27. Schneider, T.D.: Information Theory Primer (1995)

    Google Scholar 

  28. Tellenbach, B., Burkhart, M., Sornette, D., Maillart, T.: Beyond shannon: characterizing internet traffic with generalized entropy metrics. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 239–248. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00975-4_24

    Chapter  Google Scholar 

  29. Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals. Knowl.-Based Syst. 88, 85–96 (2015)

    Article  Google Scholar 

  30. Bruhn, J., Lehmann, L.E., Röpcke, H., Bouillon, T.W., Hoeft, A.: Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiol.: J. Am. Soc. Anesthesiol. 95, 30–35 (2001)

    Article  Google Scholar 

  31. Fuhrman, S., Cunningham, M.J., Wen, X., Zweiger, G., Seilhamer, J.J., Somogyi, R.: The application of Shannon entropy in the identification of putative drug targets. Biosystems 55, 5–14 (2000)

    Article  Google Scholar 

  32. De Araujo, D., Tedeschi, W., Santos, A., Elias, J., Neves, U., Baffa, O.: Shannon entropy applied to the analysis of event-related fMRI time series. NeuroImage 20, 311–317 (2003)

    Article  Google Scholar 

  33. Heikkila, E.J., Hu, L.: Adjusting spatial-entropy measures for scale and resolution effects. Environ. Plan. 33, 845–861 (2006)

    Article  Google Scholar 

  34. Feldman, D.P., Crutchfield, J.P.: Measures of statistical complexity: why? Phys. Lett. A 238, 244–252 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary. J. Nonlinear Sci. 5, 110–117 (1995)

    Google Scholar 

  36. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fleisher, L.A., Dipietro, J.A., Johnson, T.R., Pincus, S.: Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clin. Sci. 92, 345–349 (1997)

    Article  Google Scholar 

  38. Fleisher, L.A., Pincus, S.M., Rosenbaum, S.H.: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology 78, 683–692 (1993)

    Article  Google Scholar 

  39. Goldberger, A.L., Mietus, J.E., Rigney, D.R., Wood, M.L., Fortney, S.M.: Effects of head-down bed rest on complex heart rate variability: response to LBNP testing. J. Appl. Physiol. 77, 2863–2869 (1994)

    Article  Google Scholar 

  40. Mäkikallio, T.H., Seppänen, T., Niemelä, M., Airaksinen, K.E.J., Tulppo, M., Huikuri, H.V.: Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction 1. J. Am. Coll. Cardiol. 28, 1005–1011 (1996)

    Article  Google Scholar 

  41. Korpelainen, J.T., Sotaniemi, K.A., Mäkikallio, A., Huikuri, H.V., Myllylä, V.V.: Dynamic behavior of heart rate in ischemic stroke. Stroke 30, 1008–1013 (1999)

    Article  Google Scholar 

  42. Palazzolo, J.A., Estafanous, F.G., Murray, P.A.: Entropy measures of heart rate variation in conscious dogs. Am. J. Physiol. 274, H1099 (1998)

    Google Scholar 

  43. Mäkikallio, T.H., Ristimäe, T., Airaksinen, K.E.J., Peng, C.K., Goldberger, A.L., Huikuri, H.V.: Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am. J. Cardiol. 81, 27–31 (1998)

    Article  Google Scholar 

  44. Ho, K.K., Moody, G.B., Peng, C.K., Mietus, J.E., Larson, M.G., Levy, D., Goldberger, A.L.: Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96, 842 (1997)

    Article  Google Scholar 

  45. Lipsitz, L.A., Pincus, S.M., Morin, R.J., Tong, S., Eberle, L.P., Gootman, P.M.: Preliminary evidence for the evolution in complexity of heart rate dynamics during autonomic maturation in neonatal swine. J. Auton. Nerv. Syst. 65, 1 (1997)

    Article  Google Scholar 

  46. Nelson, J.C., Rizwan-uddin, Griffin, M.P., Moorman, J.R.: Probing the order within neonatal heart rate variability. Pediatr. Res. 43, 823–831 (1998)

    Google Scholar 

  47. Hogue, C.W., Domitrovich, P.P., Stein, P.K., Despotis, G.D., Re, L., Schuessler, R.B., Kleiger, R.E., Rottman, J.N.: RR interval dynamics before atrial fibrillation in patients after coronary artery bypass graft surgery. Circulation 98, 429–434 (1998)

    Article  Google Scholar 

  48. Pincus, S.M., Viscarello, R.R.: Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992)

    Google Scholar 

  49. Ryan, S.M., Goldberger, A.L., Pincus, S.M., Mietus, J., Lipsitz, L.A.: Gender- and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Cardiol. 24, 1700 (1994)

    Article  Google Scholar 

  50. Pincus, S.M., Cummins, T.R., Haddad, G.G.: Heart rate control in normal and aborted-SIDS infants. Am. J. Physiol. 264, R638 (1993)

    Google Scholar 

  51. Tulppo, M.P., Makikallio, T.H., Takala, T.E., Seppanen, T., Huikuri, H.V.: Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271, 244–252 (1996)

    Google Scholar 

  52. Pincus, S.M., Gladstone, I.M., Ehrenkranz, R.A.: A regularity statistic for medical data analysis. J. Clin. Monit. 7, 335–345 (1991)

    Article  Google Scholar 

  53. Schuckers, S.A.C.: Use of approximate entropy measurements to classify ventricular tachycardia and fibrillation. J. Electrocardiol. 31, 101–105 (1998)

    Article  Google Scholar 

  54. Seely Andrew, J.E., Macklem, P.T.: Complex systems and the technology of variability analysis. Crit. Care 8, R367 (2004)

    Article  Google Scholar 

  55. Akareddy, S.M., Kulkarni, P.K.: EEG signal classification for epilepsy seizure detection using improved approximate entropy. Int. J. Public Health Sci. 2, 23–32 (2013)

    Google Scholar 

  56. Hornero, R., Aboy, M., Abasolo, D., Mcnames, J., Goldstein, B.: Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans. Biomed. Eng. 52, 1671–1680 (2005)

    Article  Google Scholar 

  57. Veldhuis, J.D., Liem, A.Y., South, S., Weltman, A., Weltman, J., Clemmons, D.A., Abbott, R., Mulligan, T., Johnson, M.L., Pincus, S.: Differential impact of age, sex steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. J. Clin. Endocrinol. Metab. 80, 3209–3222 (1995)

    Google Scholar 

  58. Chakraborty, B., Bhattacharyya, S., Dutta, P.: An unsupervised video shot boundary detection technique using fuzzy entropy estimation of video content (2011)

    Google Scholar 

  59. Ahmed, M., Chanwimalueang, T., Thayyil, S., Mandic, D.: A multivariate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis. Entropy 19, 2 (2016)

    Article  Google Scholar 

  60. Bhattacharyya, A., Pachori, R.B., Acharya, U.R.: Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis. Entropy 19(3), 01–14 (2017)

    Article  Google Scholar 

  61. Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Bio-med. Eng. 48, 1282–1291 (2001)

    Article  Google Scholar 

  62. Porta, A., Castiglioni, P., Bari, V., Bassani, T., Marchi, A., Cividjian, A., Quintin, L., Di, R.M.: K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol. Meas. 34, 17 (2013)

    Article  Google Scholar 

  63. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  64. Li, X., Ouyang, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77, 70–74 (2007)

    Article  Google Scholar 

  65. Liang, Z., Wang, Y., Sun, X., Li, D., Voss, L.J., Sleigh, J.W., Satoshi, H., Li, X.: EEG entropy measures in anesthesia. Front. Comput. Neurosci. 9, 16 (2015)

    Article  Google Scholar 

  66. Zanin, M., Zunino, L., Rosso, O.A., Papo, D.: Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14, 1553–1577 (2012)

    Article  MATH  Google Scholar 

  67. Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 87, 022911 (2013)

    Article  Google Scholar 

  68. Shiryayev, A.N.: New metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. In: Shiryayev, A.N. (ed.) Selected Works of A. N. Kolmogorov. Mathematics and Its Applications, vol. 27, pp. 57–61. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-2973-4_5

    Chapter  Google Scholar 

  69. Xu, Q.: Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference. Tellus A 59, 198–209 (2007)

    Article  Google Scholar 

  70. Abel, M., Biferale, L., Cencini, M., Falcioni, M., Vergni, D., Vulpiani, A.: Exit-time approach to ε-entropy. Phys. Rev. Lett. 84, 6002 (2000)

    Article  MATH  Google Scholar 

  71. Santamaria, I., Pokharel, P.P., Principe, J.C.: Generalized correlation function: definition, properties, and application to blind equalization. IEEE Trans. Sig. Process. 54, 2187–2197 (2006)

    Article  MATH  Google Scholar 

  72. Li, R., Liu, W., Principe, J.C.: A unifying criterion for instantaneous blind source separation based on correntropy. Sig. Process. 87, 1872–1881 (2009)

    Article  MATH  Google Scholar 

  73. Wu, Z., Peng, S., Chen, B., Zhao, H.: Robust hammerstein adaptive filtering under maximum correntropy criterion. Entropy 17, 7149–7166 (2015)

    Article  MathSciNet  Google Scholar 

  74. Jeong, K.H.: The correntropy mace filter for image recognition. In: Proceedings of the 2006 IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, pp. 9–14 (2006)

    Google Scholar 

  75. Ma, W., Qu, H., Gui, G., Xu, L., Zhao, J., Chen, B.: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352, 2708–2727 (2015)

    Article  MATH  Google Scholar 

  76. Zhang, L., Liu, Y., Wang, M., Wu, Z., Li, N., Zhang, J., Yang, C.: EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol. 9, 477–488 (2017). https://doi.org/10.1093/jmcb/mjx056

    Article  Google Scholar 

  77. Singh, A., Principe, J.C.: Using Correntropy as a cost function in linear adaptive filters. In: International Joint Conference on Neural Networks, pp. 2950–2955 (2009)

    Google Scholar 

  78. Chen, B., Principe, J.C.: Maximum correntropy estimation is a smoothed MAP estimation. IEEE Sig. Process. Lett. 19, 491–494 (2012)

    Article  Google Scholar 

  79. Chen, B., Liu, X., Zhao, H., Principe, J.C.: Maximum correntropy Kalman filter ☆. Automatica 76, 70–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  80. Chen, B., Xing, L., Liang, J., Zheng, N., Principe, J.C.: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Sig. Process. Lett. 21, 880–884 (2014)

    Article  Google Scholar 

  81. Lu, L., Zhao, H.: Active impulsive noise control using maximum correntropy with adaptive kernel size. Mech. Syst. Sig. Process. 87, 180–191 (2017)

    Article  Google Scholar 

  82. Wang, K., Xu, L., Li, Z., Zhang, D.: Approximate entropy based pulse variability analysis. In: Proceedings of the IEEE Symposium on Computer-Based Medical Systems, pp. 236–241 (2003)

    Google Scholar 

  83. Mayer, C., Bachler, M., Holzinger, A., Stein, P., Wassertheurer, S.: The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (CAST). Entropy 18, 129 (2016)

    Article  Google Scholar 

  84. Chicote, B., Irusta, U., Alcaraz, R., Rieta, J.J., Aramendi, E., Isasi, I., Alonso, D., Ibarguren, K.: Application of entropy-based features to predict defibrillation outcome in cardiac arrest. Entropy 18, 313 (2016)

    Article  Google Scholar 

  85. Hagmair, S., Bachler, M., Braunisch, M.C., Lorenz, G., Schmaderer, C., Hasenau, A.L., Stülpnagel, L.V., Bauer, A., Rizas, K.D., Wassertheurer, S.: Challenging recently published parameter sets for entropy measures in risk prediction for end-stage renal disease patients. Entropy 19, 582 (2017)

    Article  Google Scholar 

  86. Ferlazzo, E., Mammone, N., Cianci, V., Gasparini, S., Gambardella, A., Labate, A., Latella, M.A., Sofia, V., Elia, M., Morabito, F.C.: Permutation entropy of scalp EEG: a tool to investigate epilepsies: suggestions from absence epilepsies. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 125, 13–20 (2014)

    Article  Google Scholar 

  87. Li, J., Yan, J., Liu, X., Ouyang, G.: Using permutation entropy to measure the changes in EEG signals during absence seizures. Entropy 16, 3049–3061 (2014)

    Article  Google Scholar 

  88. Melia, U., Guaita, M., Vallverdú, M., Montserrat, J.M., Vilaseca, I., Salamero, M., Gaig, C., Caminal, P., Santamaria, J.: Correntropy measures to detect daytime sleepiness from EEG signals. Physiol. Meas. 35, 2067 (2014)

    Article  Google Scholar 

  89. Gatenby, R.A., Frieden, B.R.: Information dynamics in carcinogenesis and tumor growth. Mutat. Res. 568, 259 (2004)

    Article  Google Scholar 

  90. Ritchie, W., Granjeaud, S., Puthier, D., Gautheret, D.: Entropy measures quantify global splicing disorders in cancer. PLoS Comput. Biol. 4, e1000011 (2008)

    Article  MathSciNet  Google Scholar 

  91. Banerji, C.R.S., Severini, S., Caldas, C., Teschendorff, A.E.: Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS Comput. Biol. 11, e1004115 (2015)

    Article  Google Scholar 

  92. Teschendorff, A.E., Enver, T.: Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017)

    Article  Google Scholar 

  93. Regina Berretta, P.M.: Cancer biomarker discovery: the entropic hallmark. PLoS ONE 5, e12262 (2010)

    Article  Google Scholar 

  94. Newton, P.K., Jeremy, M., Brian, H., Kelly, B., Lyudmila, B., Jorge, N., Peter, K.: Entropy, complexity, and Markov diagrams for random walk cancer models. Sci. Rep. 4, 7558 (2014)

    Article  Google Scholar 

  95. Kayser, K., Kayser, G., Metze, K.: The concept of structural entropy in tissue-based diagnosis. Anal. Quant. Cytol. Histol. 29, 296 (2007)

    Google Scholar 

  96. Castro, M.A., Onsten, T.T., de Almeida, R.M., Moreira, J.C.: Profiling cytogenetic diversity with entropy-based karyotypic analysis. J. Theor. Biol. 234, 487 (2005)

    Article  Google Scholar 

  97. Nielsen, B., Hveem, T.S., Kildal, W., Abeler, V.M., Kristensen, G.B., Albregtsen, F., Danielsen, H.E., Rohde, G.K.: Entropy-based adaptive nuclear texture features are independent prognostic markers in a total population of uterine sarcomas. Cytometry Part A: J. Int. Soc. Anal. Cytol. 87, 315–325 (2015)

    Article  Google Scholar 

  98. Vollmer, R.T.: Entropy and information content of laboratory test results. Am. J. Clin. Pathol. 127, 60–65 (2007)

    Article  Google Scholar 

  99. Humeauheurtier, A.: The multiscale entropy algorithm and its variants: a review. Entropy 17, 3110–3123 (2016)

    Article  MathSciNet  Google Scholar 

  100. Liu, H., Zhao, R., Fang, H., Cheng, F., Fu, Y., Liu, Y.Y.: A novel clustering method for patient stratification (2016)

    Google Scholar 

  101. Huang, N., Zhang, Y., Calawerts, W., Jiang, J.J.: Optimized nonlinear dynamic analysis of pathologic voices with laryngeal paralysis based on the minimum embedding dimension. J. Voice Official J. Voice Found. 31, 249.e1–249.e7 (2017)

    Article  Google Scholar 

  102. Ma, Y., Tseng, P.H., Ahn, A., Wu, M.S., Ho, Y.L., Chen, M.F., Peng, C.K.: Cardiac autonomic alteration and metabolic syndrome: an ambulatory ECG-based study in a general population. Sci. Rep. 7, 44363 (2017)

    Article  Google Scholar 

  103. Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J.D., Regnard, J.: Quantitative Poincaré plot analysis of heart rate variability: effect of endurance training. Eur. J. Appl. Physiol. 91, 79–87 (2004)

    Article  Google Scholar 

  104. Malik, S., Wong, N.D., Franklin, S.S., Kamath, T.V., Gilbert, J., Pio, J.R., Williams, G.R.: Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110, 1245–1250 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 61372138) and the National Science and Technology Major Project (No. 2018ZX10201002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanwei Yang or Le Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Xia, Y., Yang, C., Zhang, L. (2018). The Review of the Major Entropy Methods and Applications in Biomedical Signal Research. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds) Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science(), vol 10847. Springer, Cham. https://doi.org/10.1007/978-3-319-94968-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94968-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94967-3

  • Online ISBN: 978-3-319-94968-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics