Advertisement

Master Equations Versus Keldysh Green’s Functions for Correlated Quantum Systems Out of Equilibrium

Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 191)

Abstract

The goal of these lecture notes is to illustrate connections between two widely used, but often separately adopted approaches to deal with quantum systems out of equilibrium, namely quantum master equations and nonequilibrium Green’s functions. For the paradigmatic case of the Anderson impurity model out of equilibrium we elaborate on these connections and map its description from one approach to the other. At the end of this chapter, we will show how the “best of the two worlds” can be combined to obtain a highly accurate solution of this model, which resolves the nonequilibrium Kondo physics down to temperatures well below the Kondo scale. As a training course, these lectures devote a large portion to an introduction to the Lindblad quantum master equation based on standard treatments, as well as methods to solve this equation. For nonequilibrium Green’s functions, which are discussed in the first part of the course, we only provide a summary of the most important aspects necessary to address the topics of the present chapter. The relevant aspects of these two topics are presented in a self-contained manner so that a background in equilibrium many-body physics is sufficient to follow these notes.

Notes

Acknowledgements

We gratefully acknowledge fruitful discussions with Michael Knap, Delia Fugger, Max Sorantin, Irakli Titvinidze, Frauke Schwarz, Jan von Delft, Sebastian Diehl, Wolfgang von der Linden, Hans Gerd Evertz, and Martin Nuss. Special thanks to Manuel Alamo, Fabio Covito, Daniel May, Matthias Peschke, and Christian Schäfer for help with the preparation of the manuscript. Thanks also to Roberta Citro and Ferdinando Mancini for the organization of this school. This work was partially supported by the Austrian Science Fund (FWF) within Projects P26508, and F41 (SFB ViCoM), as well as NaWi Graz. The calculations were partly performed on the D-Cluster Graz and on the VSC-3 cluster Vienna.

References

  1. 1.
    H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Heidelberg, 1998). http://www.springer.com/us/book/9783540735618
  2. 2.
    J. Rammer, H. Smith, Rev. Mod. Phys. 58, 323 (1986).  https://doi.org/10.1103/RevModPhys.58.323ADSCrossRefGoogle Scholar
  3. 3.
  4. 4.
    J. Kondo, Progress Theor. Phys. 32(1), 37 (1964).  https://doi.org/10.1143/PTP.32.37. http://ptp.ipap.jp/link?PTP/32/37/
  5. 5.
    J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966).  https://doi.org/10.1103/PhysRev.149.491ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).  https://doi.org/10.1017/CBO9780511470752 (Cambridge Books Online)
  7. 7.
    R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80(2), 395 (2008).  https://doi.org/10.1103/RevModPhys.80.395ADSCrossRefGoogle Scholar
  8. 8.
    M. Caffarel, W. Krauth, Phys. Rev. Lett. 72(10), 1545 (1994).  https://doi.org/10.1103/PhysRevLett.72.1545ADSCrossRefGoogle Scholar
  9. 9.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).  https://doi.org/10.1103/RevModPhys.68.13ADSCrossRefGoogle Scholar
  10. 10.
    H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Mod. Phys. 86, 779 (2014).  https://doi.org/10.1103/RevModPhys.86.779ADSCrossRefGoogle Scholar
  11. 11.
    P. Schmidt, H. Monien, Nonequilibrium dynamical mean-field theory of a strongly correlated system (2002). http://arxiv.org/abs/cond-mat/0202046
  12. 12.
    J.K. Freericks, V.M. Turkowski, V. Zlatić, Phys. Rev. Lett. 97(26), 266408 (2006).  https://doi.org/10.1103/PhysRevLett.97.266408ADSCrossRefGoogle Scholar
  13. 13.
    J.K. Freericks, Phys. Rev. B 77(7), 075109 (2008).  https://doi.org/10.1103/PhysRevB.77.075109ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Joura, J.K. Freericks, T. Pruschke, Phys. Rev. Lett. 101(19), 196401 (2008).  https://doi.org/10.1103/PhysRevLett.101.196401. http://link.aps.org/abstract/PRL/v101/e196401
  15. 15.
    M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008).  https://doi.org/10.1103/PhysRevLett.100.175702ADSCrossRefGoogle Scholar
  16. 16.
    M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009).  https://doi.org/10.1103/PhysRevLett.103.056403ADSCrossRefGoogle Scholar
  17. 17.
    S. Okamoto, Phys. Rev. B 76, 035105 (2007).  https://doi.org/10.1103/PhysRevB.76.035105ADSCrossRefGoogle Scholar
  18. 18.
    S. Okamoto, Phys. Rev. Lett. 101, 116807 (2008).  https://doi.org/10.1103/PhysRevLett.101.116807ADSCrossRefGoogle Scholar
  19. 19.
    A. Amaricci, C. Weber, M. Capone, G. Kotliar, Phys. Rev. B 86, 085110 (2012).  https://doi.org/10.1103/PhysRevB.86.085110ADSCrossRefGoogle Scholar
  20. 20.
    E. Munoz, C.J. Bolech, S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    E. Arrigoni, M. Knap, W. von der Linden, Phys. Rev. Lett. 110, 086403 (2013).  https://doi.org/10.1103/PhysRevLett.110.086403ADSCrossRefGoogle Scholar
  22. 22.
    I. Titvinidze, A. Dorda, W. von der Linden, E. Arrigoni, Phys. Rev. B 92, 245125 (2015).  https://doi.org/10.1103/PhysRevB.92.245125ADSCrossRefGoogle Scholar
  23. 23.
    A. Dorda, I. Titvinidze, E. Arrigoni, J. Phys.: Conf. Ser. 696(1), 012003 (2016).  https://doi.org/10.1088/1742-6596/696/1/012003CrossRefGoogle Scholar
  24. 24.
    G. Mazza, A. Amaricci, M. Capone, M. Fabrizio, Phys. Rev. Lett. 117, 176401 (2016).  https://doi.org/10.1103/PhysRevLett.117.176401ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    J.H. Shirley, Phys. Rev. 138, B979 (1965).  https://doi.org/10.1103/PhysRev.138.B979ADSCrossRefGoogle Scholar
  27. 27.
    R. Citro, N. Andrei, Q. Niu, Phys. Rev. B 68, 165312 (2003).  https://doi.org/10.1103/PhysRevB.68.165312ADSCrossRefGoogle Scholar
  28. 28.
    A. Russomanno, S. Pugnetti, V. Brosco, R. Fazio, Phys. Rev. B 83, 214508 (2011).  https://doi.org/10.1103/PhysRevB.83.214508ADSCrossRefGoogle Scholar
  29. 29.
    A.K. Eissing, V. Meden, D.M. Kennes, Phys. Rev. Lett. 116, 026801 (2016).  https://doi.org/10.1103/PhysRevLett.116.026801ADSCrossRefGoogle Scholar
  30. 30.
    N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Phys. Rev. Lett. 61(12), 1396 (1988).  https://doi.org/10.1103/PhysRevLett.61.1396ADSCrossRefGoogle Scholar
  31. 31.
    J.X. Zhu, A.V. Balatsky, Phys. Rev. B 67, 165326 (2003).  https://doi.org/10.1103/PhysRevB.67.165326ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    T. Yamamoto, K. Watanabe, Phys. Rev. Lett. 96, 255503 (2006).  https://doi.org/10.1103/PhysRevLett.96.255503ADSCrossRefGoogle Scholar
  34. 34.
    J. Loos, T. Koch, A. Alvermann, A.R. Bishop, H. Fehske, J. Phys. Condens. Matter 21(39), 395601 (2009). http://stacks.iop.org/0953-8984/21/i=39/a=395601Google Scholar
  35. 35.
    M. Galperin, A. Nitzan, M.A. Ratner, Phys. Rev. B 75, 155312 (2007).  https://doi.org/10.1103/PhysRevB.75.155312ADSCrossRefGoogle Scholar
  36. 36.
    T.A. Costi, A.C. Hewson, V. Zlatic, J. Phys. Condens. Matter 6(13), 2519 (1994). http://stacks.iop.org/0953-8984/6/i=13/a=013ADSGoogle Scholar
  37. 37.
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    N.S. Wingreen, Y. Meir, Phys. Rev. B 49, 11040 (1994).  https://doi.org/10.1103/PhysRevB.49.11040ADSCrossRefGoogle Scholar
  40. 40.
    E. Lebanon, A. Schiller, Phys. Rev. B 65, 035308 (2001).  https://doi.org/10.1103/PhysRevB.65.035308ADSCrossRefGoogle Scholar
  41. 41.
    A. Rosch, J. Paaske, J. Kroha, P. Wölfle, Phys. Rev. Lett. 90(7), 076804 (2003).  https://doi.org/10.1103/PhysRevLett.90.076804ADSCrossRefGoogle Scholar
  42. 42.
    J. Paaske, A. Rosch, J. Kroha, P. Wölfle, Phys. Rev. B 70(15), 155301 (2004).  https://doi.org/10.1103/PhysRevB.70.155301ADSCrossRefGoogle Scholar
  43. 43.
    A. Rosch, J. Paaske, J. Kroha, P. Wölfle, J. Phys. Soc. Jpn. 74(1), 118 (2005).  https://doi.org/10.1143/JPSJ.74.118. http://jpsj.ipap.jp/link?JPSJ/74/118/ADSCrossRefGoogle Scholar
  44. 44.
    J.E. Han, R.J. Heary, Phys. Rev. Lett. 99, 236808 (2007).  https://doi.org/10.1103/PhysRevLett.99.236808ADSCrossRefGoogle Scholar
  45. 45.
    F.B. Anders, Phys. Rev. Lett. 101(6), 066804 (2008).  https://doi.org/10.1103/PhysRevLett.101.066804ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    F. Heidrich-Meisner, A.E. Feiguin, E. Dagotto, Phys. Rev. B 79, 235336 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    J. Eckel, F. Heidrich-Meisner, S.G. Jakobs, M. Thorwart, M. Pletyukhov, R. Egger, New. J. Phys. 12, 043042 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    L. Mayrhofer, M. Grifoni, Eur. Phys. J. B 56(2), 107 (2007).  https://doi.org/10.1140/epjb/e2007-00097-3ADSCrossRefGoogle Scholar
  49. 49.
    D. Darau, G. Begemann, A. Donarini, M. Grifoni, Phys. Rev. B 79, 235404 (2009).  https://doi.org/10.1103/PhysRevB.79.235404ADSCrossRefGoogle Scholar
  50. 50.
    R. Gezzi, T. Pruschke, V. Meden, Phys. Rev. B 75, 045324 (2007).  https://doi.org/10.1103/PhysRevB.75.045324ADSCrossRefGoogle Scholar
  51. 51.
    S.G. Jakobs, V. Meden, H. Schoeller, Phys. Rev. Lett. 99(15), 150603 (2007).  https://doi.org/10.1103/PhysRevLett.99.150603ADSCrossRefGoogle Scholar
  52. 52.
    H. Schoeller, Eur. Phys. J. Spec. Top. 168, 179 (2009).  https://doi.org/10.1140/epjst/e2009-00962-3CrossRefGoogle Scholar
  53. 53.
    P. Werner, T. Oka, M. Eckstein, A.J. Millis, Phys. Rev. B 81(3), 035108 (2010).  https://doi.org/10.1103/PhysRevB.81.035108ADSCrossRefGoogle Scholar
  54. 54.
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).  https://doi.org/10.1103/RevModPhys.83.1405ADSCrossRefGoogle Scholar
  55. 55.
    M. Pletyukhov, H. Schoeller, Phys. Rev. Lett. 108, 260601 (2012).  https://doi.org/10.1103/PhysRevLett.108.260601ADSCrossRefGoogle Scholar
  56. 56.
    F. Reininghaus, M. Pletyukhov, H. Schoeller, Phys. Rev. B 90, 085121 (2014).  https://doi.org/10.1103/PhysRevB.90.085121ADSCrossRefGoogle Scholar
  57. 57.
    G. Cohen, E. Gull, D.R. Reichman, A.J. Millis, Phys. Rev. Lett. 112, 146802 (2014).  https://doi.org/10.1103/PhysRevLett.112.146802ADSCrossRefGoogle Scholar
  58. 58.
    M. Nuss, C. Heil, M. Ganahl, M. Knap, H.G. Evertz, E. Arrigoni, W. von der Linden, Phys. Rev. B 86, 245119 (2012).  https://doi.org/10.1103/PhysRevB.86.245119
  59. 59.
    D. Sexty, T. Gasenzer, J. Pawlowski, Phys. Rev. B 83, 165315 (2011).  https://doi.org/10.1103/PhysRevB.83.165315ADSCrossRefGoogle Scholar
  60. 60.
    R. Hützen, S. Weiss, M. Thorwart, R. Egger, Phys. Rev. B 85, 121408 (2012).  https://doi.org/10.1103/PhysRevB.85.121408ADSCrossRefGoogle Scholar
  61. 61.
    M. Nuss, M. Ganahl, H.G. Evertz, E. Arrigoni, W. von der Linden, Phys. Rev. B 88, 045132 (2013).  https://doi.org/10.1103/PhysRevB.88.045132ADSCrossRefGoogle Scholar
  62. 62.
    M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. B 88, 054301 (2013).  https://doi.org/10.1103/PhysRevB.88.054301ADSCrossRefGoogle Scholar
  63. 63.
    A. Dorda, M. Nuss, W. von der Linden, E. Arrigoni, Phys. Rev. B 89, 165105 (2014).  https://doi.org/10.1103/PhysRevB.89.165105ADSCrossRefGoogle Scholar
  64. 64.
    S. Bock, A. Liluashvili, T. Gasenzer, Phys. Rev. B 94, 045108 (2016).  https://doi.org/10.1103/PhysRevB.94.045108ADSCrossRefGoogle Scholar
  65. 65.
    A.A. Dzhioev, D.S. Kosov, J. Chem. Phys. 134, 044121 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    T. Prosen, New J. Phys. 10, 043026 (2008)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    T. Prosen, J. Stat. Mech. Theory Exp. 2010(07), P07020 (2010). http://stacks.iop.org/1742-5468/2010/i=07/a=P07020
  68. 68.
    S.A. Gurvitz, Y.S. Prager, Phys. Rev. B 53, 15932 (1996).  https://doi.org/10.1103/PhysRevB.53.15932ADSCrossRefGoogle Scholar
  69. 69.
    A.A. Dzhioev, D.S. Kosov, J. Chem. Phys. 135(17), 174111 (2011).  https://doi.org/10.1063/1.3658736. http://link.aip.org/link/?JCP/135/174111/1
  70. 70.
    S. Ajisaka, F. Barra, C. Mejía-Monasterio, T. Prosen, Phys. Rev. B 86, 125111 (2012).  https://doi.org/10.1103/PhysRevB.86.125111ADSCrossRefGoogle Scholar
  71. 71.
    A. Dorda, M. Sorantin, W. von der Linden, E. Arrigoni, New J. Phys. 19(6), 063005 (2017).  https://doi.org/10.1088/1367-2630/aa6ccc. http://stacks.iop.org/1367-2630/19/i=6/a=063005ADSCrossRefGoogle Scholar
  72. 72.
  73. 73.
    H.P. Breuer, J. Gemmer, M. Michel, Phys. Rev. E 73, 016139 (2006).  https://doi.org/10.1103/PhysRevE.73.016139ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, Phys. Rev. Lett. 109, 170402 (2012).  https://doi.org/10.1103/PhysRevLett.109.170402ADSCrossRefGoogle Scholar
  75. 75.
    M.P. Woods, R. Groux, A.W. Chin, S.F. Huelga, M.B. Plenio, J. Math. Phys. 55(3) (2014).  https://doi.org/10.1063/1.4866769
  76. 76.
    I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).  https://doi.org/10.1103/RevModPhys.89.015001ADSCrossRefGoogle Scholar
  77. 77.
    L.M. Sieberer, M. Buchhold, S. Diehl, Rep. Prog. Phys. 79(9), 096001 (2016). http://stacks.iop.org/0034-4885/79/i=9/a=096001ADSCrossRefGoogle Scholar
  78. 78.
    A. Dorda, M. Ganahl, H.G. Evertz, W. von der Linden, E. Arrigoni, Phys. Rev. B 92, 125145 (2015).  https://doi.org/10.1103/PhysRevB.92.125145ADSCrossRefGoogle Scholar
  79. 79.
  80. 80.
    F. Verstraete, J.J. García-Ripoll, J.I. Cirac, Phys. Rev. Lett. 93(20), 207204 (2004).  https://doi.org/10.1103/PhysRevLett.93.207204. http://link.aps.org/abstract/PRL/v93/e207204
  81. 81.
    M. Zwolak, G. Vidal, Phys. Rev. Lett. 93(20), 207205 (2004).  https://doi.org/10.1103/PhysRevLett.93.207205. http://link.aps.org/abstract/PRL/v93/e207205
  82. 82.
    T. Prosen, M. Znidaric, J. Stat. Mech. 2009(02), P02035 (2009). http://stacks.iop.org/1742-5468/2009/i=02/a=P02035CrossRefGoogle Scholar
  83. 83.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, England, 2009). https://global.oup.com/academic/product/the-theory-of-open-quantum-systems-9780199213900CrossRefGoogle Scholar
  84. 84.
    G. Schaller, Open Quantum Systems Far from Equilibrium. Lecture Notes in Physics (Springer, Heidelberg, 2014). http://www.springer.com/us/book/9783319038766CrossRefGoogle Scholar
  85. 85.
    H.J. Carmichael, Statistical Methods in Quantum Optics: Master Equations and Fokker-Planck Equations, Texts and Monographs in Physics, vol. 1 (Springer, Singapore, 2002)Google Scholar
  86. 86.
    V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Wennheim, 2011)CrossRefGoogle Scholar
  87. 87.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2000)CrossRefGoogle Scholar
  88. 88.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, Weinheim, 2004).  https://doi.org/10.1002/9783527617197
  89. 89.
    J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).  https://doi.org/10.1103/PhysRevLett.68.580ADSCrossRefGoogle Scholar
  90. 90.
    H.P. Breuer, B. Kappler, F. Petruccione, Phys. Rev. A 56, 2334 (1997).  https://doi.org/10.1103/PhysRevA.56.2334ADSCrossRefGoogle Scholar
  91. 91.
    H. Breuer, B. Kappler, F. Petruccione, Eur. Phys. J. B 1(1), 9 (1998).  https://doi.org/10.1007/s100530050058CrossRefGoogle Scholar
  92. 92.
    A.J. Daley, J.M. Taylor, S. Diehl, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009).  https://doi.org/10.1103/PhysRevLett.102.040402ADSCrossRefGoogle Scholar
  93. 93.
  94. 94.
    M. Schmutz, Z. Phys. B 30, 97 (1978).  https://doi.org/10.1007/BF01323673
  95. 95.
    F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A. Weichselbaum, J. von Delft, Phys. Rev. B 94, 155142 (2016).  https://doi.org/10.1103/PhysRevB.94.155142ADSCrossRefGoogle Scholar
  96. 96.
    R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.O. Almbladh, U. von Barth, Introduction to the Keldysh Formalism (Springer, Berlin, 2006), Lecture Notes in Physics, vol. 706, Chap. 3, pp. 33–59Google Scholar
  97. 97.
    E.N. Economou, Green’s Functions in Quantum Physics (Springer, Heidelberg, 2006)CrossRefGoogle Scholar
  98. 98.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68(16), 2512 (1992). http://link.aps.org/abstract/PRL/v68/p2512ADSCrossRefGoogle Scholar
  99. 99.
    K. Balzer, S. Hermanns, M. Bonitz, J. Phys. Conf. Ser. 427(1), 012006 (2013). http://stacks.iop.org/1742-6596/427/i=1/a=012006
  100. 100.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  101. 101.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised Edition (Society for Industrial and Applied Mathematics, 2011)Google Scholar
  102. 102.
    P. Arbenz. Lecture notes on solving large scale eigenvalue problems (2012). http://people.inf.ethz.ch/arbenz/ewp/lnotes.html. Online; Accessed May 2016
  103. 103.
    Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Software, Environments and Tools) (Society for Industrial and Applied Mathematics, 1987)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graz University of TechnologyGrazAustria

Personalised recommendations