Skip to main content

Towards the Understanding of Superconductors and Correlated Materials out of Equilibrium: Mean Field Approaches

  • Chapter
  • First Online:
Out-of-Equilibrium Physics of Correlated Electron Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 191))

  • 807 Accesses

Abstract

Lectures prepared for the XX Training Course in the Physics of Strongly Correlated Systems held in Vietri sul Mare (Sa), October 3–7, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani, D. Mihailovic, Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65(2), 58–238 (2016)

    Article  ADS  Google Scholar 

  2. S. Dal Conte, C. Giannetti, G. Coslovich, F. Cilento, D. Bossini, T. Abebaw, F. Banfi, G. Ferrini, H. Eisaki, M. Greven, A. Damascelli, D. van der Marel, F. Parmigiani, Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 335(6076), 1600–1603 (2012)

    Article  ADS  Google Scholar 

  3. M. Sentef, A.F. Kemper, B. Moritz, J.K. Freericks, Z.-X. Shen, T.P. Devereaux, Examining electron-boson coupling using time-resolved spectroscopy. Phys. Rev. X 3, 041033 (2013)

    Google Scholar 

  4. S. Dal Conte, L. Vidmar, D. Golez, M. Mierzejewski, G. Soavi, S. Peli, F. Banfi, G. Ferrini, R. Comin, B.M. Ludbrook, L. Chauviere, N.D. Zhigadlo, H. Eisaki, M. Greven, S. Lupi, A. Damascelli, D. Brida, M. Capone, J. Bonca, G. Cerullo, C. Giannetti, Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015)

    Article  Google Scholar 

  5. B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone, Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Nat. Acad. Sci. 110(12), 4539–4544 (2013)

    Article  ADS  Google Scholar 

  6. F. Novelli, G. De Filippis, V. Cataudella, M. Esposito, I. Vergara, F. Cilento, E. Sindici, A. Amaricci, C. Giannetti, D. Prabhakaran, S. Wall, A. Perucchi, S. Dal Conte, G. Cerullo, M. Capone, A. Mishchenko, M. Grüninger, N. Nagaosa, F. Parmigiani, D. Fausti, Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system. Nat. Commun. 5, 5112 (2014)

    Article  Google Scholar 

  7. F. Novelli, G. Giovannetti, A. Avella, F. Cilento, L. Patthey, M. Radovic, M. Capone, F. Parmigiani, D. Fausti, Localized vibrations in superconducting \(\text{YBa}_{2}\text{Cu}_3\text{O}_7\) revealed by ultrafast optical coherent spectroscopy. Phys. Rev. B 95, 174524 (2017)

    Google Scholar 

  8. J.D. Rameau, S. Freutel, L. Rettig, I. Avigo, M. Ligges, Y. Yoshida, H. Eisaki, J. Schneeloch, R.D. Zhong, Z.J. Xu, G.D. Gu, P.D. Johnson, U. Bovensiepen, Photoinduced changes in the cuprate electronic structure revealed by femtosecond time- and angle-resolved photoemission. Phys. Rev. B 89, 115115 (2014)

    Article  ADS  Google Scholar 

  9. C.L. Smallwood, W. Zhang, T.L. Miller, G. Affeldt, K. Kurashima, C. Jozwiak, T. Noji, Y. Koike, H. Eisaki, D.-H. Lee, R.A. Kaindl, A. Lanzara, Influence of optically quenched superconductivity on quasiparticle relaxation rates in \(\text{Bi}_{2}\text{Sr}_{2}\text{CaCu}_{2}\text{O}_{8+{\delta }}\). Phys. Rev. B 92, 161102 (2015)

    Google Scholar 

  10. C. Giannetti, F. Cilento, S.D. Conte, G. Coslovich, G. Ferrini, H. Molegraaf, M. Raichle, R. Liang, H. Eisaki, M. Greven, A. Damascelli, D. van der Marel, F. Parmigiani, Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011)

    Article  Google Scholar 

  11. F. Cilento, S. Dal Conte, G. Coslovich, S. Peli, N. Nembrini, S. Mor, F. Banfi, G. Ferrini, H. Eisaki, M.K. Chan, C.J. Dorow, M.J. Veit, M. Greven, D. van der Marel, R. Comin, A. Damascelli, L. Rettig, U. Bovensiepen, M. Capone, C. Giannetti, F. Parmigiani, Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates. Nat. Commun. 5, 4353 (2014)

    Article  Google Scholar 

  12. S. Peli, S.D. Conte, R. Comin, N. Nembrini, A. Ronchi, P. Abrami, F. Banfi, G. Ferrini, D. Brida, S. Lupi, M. Fabrizio, A. Damascelli, M. Capone, G. Cerullo, C. Giannetti, Mottness at finite doping and charge instabilities in cuprates. Nat. Phys. 13, 806–811 (2017)

    Article  Google Scholar 

  13. D. Polli, M. Rini, S. Wall, R.W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, A. Cavalleri, Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite. Nat. Mater. 6, 643 (2007)

    Article  ADS  Google Scholar 

  14. D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate. Science 331(6014), 189–191 (2011)

    Article  ADS  Google Scholar 

  15. R. Mankowsky, A. Subedi, M. Forst, S.O. Mariager, M. Chollet, H.T. Lemke, J.S. Robinson, J.M. Glownia, M.P. Minitti, A. Frano, M. Fechner, N.A. Spaldin, T. Loew, B. Keimer, A. Georges, A. Cavalleri, Nonlinear lattice dynamics as a basis for enhanced superconductivity in \(\text{YBa}_{2}\text{Cu}_{3}\text{O}_{6.5}\). Nature 516, 71–73 (2014)

    Article  ADS  Google Scholar 

  16. T. Langen, R. Geiger, J. Schmiedmayer, Ultracold atoms out of equilibrium. Ann. Rev. Condens. Matter Phys. 6(1), 201–217 (2015)

    Article  ADS  Google Scholar 

  17. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium. Rev. Mod. Phys. 83, 863–883 (2011)

    Article  ADS  Google Scholar 

  18. U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014)

    Article  ADS  Google Scholar 

  21. G. Kotliar, A.E. Ruckenstein, New functional integral approach to strongly correlated fermi systems: the gutzwiller approximation as a saddle point. Phys. Rev. Lett. 57, 1362–1365 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Lechermann, A. Georges, G. Kotliar, O. Parcollet, Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight. Phys. Rev. B 76, 155102 (2007)

    Article  ADS  Google Scholar 

  23. A. Isidori, M. Capone, Rotationally invariant slave bosons for strongly correlated superconductors. Phys. Rev. B 80, 115120 (2009)

    Article  ADS  Google Scholar 

  24. S. Florens, A. Georges, Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004)

    Article  ADS  Google Scholar 

  25. L. de’ Medici, M. Capone, Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund’s Physics in Fe-Superconductors (Springer International Publishing, Cham, 2017), pp. 115–185

    Google Scholar 

  26. N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sect. A 62(7), 416 (1949)

    Article  ADS  Google Scholar 

  27. E.H. Lieb, F.Y. Wu, Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968)

    Article  ADS  Google Scholar 

  28. A. Toschi, M. Capone, C. Castellani, Energetic balance of the superconducting transition across the BCS-Bose Einstein crossover in the attractive Hubbard model. Phys. Rev. B 72(23), 235118 (2005)

    Article  ADS  Google Scholar 

  29. M. Keller, W. Metzner, U. Schollwck, Dynamical mean-field theory for pairing and spin gap in the attractive Hubbard model. Phys. Rev. Lett. 86, 4612–4615 (2001)

    Article  ADS  Google Scholar 

  30. M. Capone, C. Castellani, M. Grilli, First-order pairing transition and single-particle spectral function in the attractive Hubbard model. Phys. Rev. Lett. 88(12), 126403 (2002)

    Article  ADS  Google Scholar 

  31. A. Toschi, P. Barone, M. Capone, C. Castellani, Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model. New J. Phys. 7(ii), 7–7 (2005)

    Article  ADS  Google Scholar 

  32. G. Mazza, From sudden quench to adiabatic dynamics in the attractive hubbard model. arXiv:1708.01096 (2017)

  33. A. Amaricci, M. Capone, Dynamical mean-field theory description of the voltage-induced transition in a nonequilibrium superconductor. Phys. Rev. B 93, 014508 (2016)

    Article  ADS  Google Scholar 

  34. M.C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. 134, A923–A941 (1964)

    Article  ADS  Google Scholar 

  35. M.C. Gutzwiller, Correlation of electrons in a narrow \(s\) band. Phys. Rev. 137, A1726–A1735 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  36. W.F. Brinkman, T.M. Rice, Application of gutzwiller’s variational method to the metal-insulator transition. Phys. Rev. B 2, 4302–4304 (1970)

    Article  ADS  Google Scholar 

  37. M. Schiró, M. Fabrizio, Time-dependent mean field theory for quench dynamics in correlated electron systems. Phys. Rev. Lett. 105(7), 076401 (2010)

    Article  ADS  Google Scholar 

  38. M. Schiró, M. Fabrizio, Quantum quenches in the Hubbard model: time-dependent mean-field theory and the role of quantum fluctuations. Phys. Rev. B 83, 165105 (2011)

    Article  ADS  Google Scholar 

  39. M. Fabrizio, The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation (Springer Netherlands, Dordrecht, 2013), pp. 247–273

    Google Scholar 

  40. M. Sandri, The Gutzwiller Approach to out-of-equilibrium correlated fermions. Ph.D. thesis, SISSA (October 2014)

    Google Scholar 

  41. G. Mazza, Non Equilibrium Phenomena in Strongly Correlated Systems. Ph.D. thesis, SISSA (2014/2015)

    Google Scholar 

  42. G. Seibold, J. Lorenzana, Time-dependent gutzwiller approximation for the Hubbard model. Phys. Rev. Lett. 86, 2605–2608 (2001)

    Article  ADS  Google Scholar 

  43. J. Bünemann, M. Capone, J. Lorenzana, G. Seibold, Linear-response dynamics from the time-dependent gutzwiller approximation. New J. Phys. 15(5), 053050 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Mazza, A. Amaricci, M. Capone, M. Fabrizio, Electronic transport and dynamics in correlated heterostructures. Phys. Rev. B 91, 195124 (2015)

    Article  ADS  Google Scholar 

  45. M. Sandri, M. Fabrizio, Nonequilibrium gap collapse near a first-order Mott transition. Phys. Rev. B 91, 115102 (2015)

    Article  ADS  Google Scholar 

  46. A. Georges, Strongly correlated electron materials: dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715(1), 3–74 (2004)

    Article  ADS  Google Scholar 

  47. D. Vollhardt, K. Byczuk, M. Kollar, Dynamical Mean-Field Theory (Springer, Berlin, 2012), pp. 203–236

    Google Scholar 

  48. W. Metzner, D. Vollhardt, Correlated lattice fermions in \(d=\infty \) dimensions. Phys. Rev. Lett. 62, 324–327 (1989)

    Article  ADS  Google Scholar 

  49. A. Georges, G. Kotliar, Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992)

    Article  ADS  Google Scholar 

  50. M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett. 103, 056403 (2009)

    Article  ADS  Google Scholar 

  51. M. Moeckel, S. Kehrein, Interaction quench in the Hubbard model. Phys. Rev. Lett. 100, 175702 (2008)

    Article  ADS  Google Scholar 

  52. M. Moeckel, S. Kehrein, Crossover from adiabatic to sudden interaction quenches in the hubbard model: prethermalization and non-equilibrium dynamics. New J. Phys. 12(5), 055016 (2010)

    Article  ADS  Google Scholar 

  53. M. Kollar, F.A. Wolf, M. Eckstein, Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B 84, 054304 (2011)

    Article  ADS  Google Scholar 

  54. M. Eckstein, M. Kollar, Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy. New J. Phys. 12(5), 055012 (2010)

    Article  ADS  Google Scholar 

  55. M. Sandri, M. Schiró, M. Fabrizio, Linear ramps of interaction in the fermionic Hubbard model. Phys. Rev. B 86, 075122 (2012)

    Article  ADS  Google Scholar 

  56. N. Tsuji, M. Eckstein, P. Werner, Nonthermal antiferromagnetic order and nonequilibrium criticality in the Hubbard model. Phys. Rev. Lett. 110, 136404 (2013)

    Article  ADS  Google Scholar 

  57. M. Sandri, M. Fabrizio, Nonequilibrium dynamics in the antiferromagnetic Hubbard model. Phys. Rev. B 88, 165113 (2013)

    Article  ADS  Google Scholar 

  58. F. Peronaci, M. Schiró, M. Capone, Transient dynamics of \(d\)-wave superconductors after a sudden excitation. Phys. Rev. Lett. 115, 257001 (2015)

    Article  ADS  Google Scholar 

  59. F. Peronaci, Transient Dynamics of Unconventional Superconductors: \(d\)-wave Symmetry and Strong Correlations. Ph.D. thesis, SISSA (October 2016)

    Google Scholar 

  60. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  61. G. Kotliar, Resonating valence bonds and \(d\)-wave superconductivity. Phys. Rev. B 37, 3664–3666 (1988)

    Article  ADS  Google Scholar 

  62. G. Kotliar, J. Liu, Superexchange mechanism and \(d\)-wave superconductivity. Phys. Rev. B 38, 5142–5145 (1988)

    Article  ADS  Google Scholar 

  63. P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  Google Scholar 

  64. M. Hashimoto, I.M. Vishik, R.-H. He, T.P. Devereaux, Z.-X. Shen, Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014)

    Article  Google Scholar 

  65. P.W. Anderson, Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900–1916 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  66. R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, R. Shimano, Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345(6201), 1145–1149 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  67. E.A. Yuzbashyan, B.L. Altshuler, V.B. Kuznetsov, V.Z. Enolskii, Nonequilibrium cooper pairing in the nonadiabatic regime. Phys. Rev. B 72, 220503 (2005)

    Article  ADS  Google Scholar 

  68. M.S. Foster, V. Gurarie, M. Dzero, E.A. Yuzbashyan, Quench-induced floquet topological \(p\)-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014)

    Article  ADS  Google Scholar 

  69. I. Marquette, J. Links, Integrability of an extended \(d+id\)-wave pairing hamiltonian. Nucl. Phys. B 866(3), 378–390 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  70. R.A. Barankov, L.S. Levitov, B.Z. Spivak, Collective Rabi oscillations and solitons in a time-dependent BCS pairing problem. Phys. Rev. Lett. 93, 160401 (2004)

    Article  ADS  Google Scholar 

  71. R.A. Barankov, L.S. Levitov, Synchronization in the BCS pairing dynamics as a critical phenomenon. Phys. Rev. Lett. 96, 230403 (2006)

    Article  ADS  Google Scholar 

  72. E.A. Yuzbashyan, O. Tsyplyatyev, B.L. Altshuler, Relaxation and persistent oscillations of the order parameter in fermionic condensates. Phys. Rev. Lett. 96, 097005 (2006)

    Article  ADS  Google Scholar 

  73. A.F. Volkov, S.M. Kogan, Collisionless relaxation of the energy gap in superconductors. Sov. J. Exp. Theor. Phys. 38, 1018 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

The preparation of the lectures and of the lecture notes has greatly benefitted from the reading of the Ph.D. theses by M. Sandri, G. Mazza and F. Peronaci and it is based on the precious collaborations with A. Amaricci, M. Fabrizio, C. Giannetti and M. Schiró on these topics. We also acknowledge useful discussions with A. Avella, V. Brosco, A. Cavalleri, F. Cilento, R. Citro, L. de’ Medici, M. Eckstein, D. Fausti, G. Giovannetti, L. Fanfarillo, G. Kotliar, G. Mazza, D. Mihajlovic, F. Novelli, F. Parmigiani, S. Peli, F. Peronaci, G. Sangiovanni, M. Sandri, A. Toschi, A. Valli, P. Werner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Capone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capone, M., Lupo, C. (2018). Towards the Understanding of Superconductors and Correlated Materials out of Equilibrium: Mean Field Approaches. In: Citro, R., Mancini, F. (eds) Out-of-Equilibrium Physics of Correlated Electron Systems. Springer Series in Solid-State Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-94956-7_2

Download citation

Publish with us

Policies and ethics