Advertisement

Photoluminescence

  • Wei LuEmail author
  • Ying Fu
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 215)

Abstract

Quantum mechanics theory about photoluminescence is first introduced then applied to various case studies to understand the microscopic processes, namely photon excitation, energy relaxation and radiative recombination, involved in the photoluminescence spectroscopy in semiconductor structures ranging from bulk to nanoscale. The study is further deepened by analyzing the photoluminescence spectra of quantum dots under the multiphoton excitation.

References

  1. 1.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–75 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995), p. 156Google Scholar
  3. 3.
    D.J. Olego, J.P. Faurie, S. Sivananthan, P.M. Raccah, Optoelectronic properties of Cd(1-x)Zn(x)Te films grown by molecular beam epitaxy on GaAs substrates. Appl. Phys. Lett. 47, 1172–1174 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    X.Q. Liu, W. Lu, Z.F. Li, Y.D. Chen, S.C. Shen, Y. Fu, M. Willander, H.H. Tan, S. Yuan, C. Jagadish, J. Zou, D.J.H. Cockayne, Spatially resolved luminescence investigation of AlGaAs/GaAs single quantum wires modified by selective implantation and annealing. Appl. Phys. Lett. 75, 3339(3) (1999)ADSGoogle Scholar
  5. 5.
    G. Turrel, J. Corset, Raman Microscopy: Developments and Applications (Academic Press, London, 1996)Google Scholar
  6. 6.
    P.W. Yu, D.C. Look, W. Ford, Photoluminescence in electrically reversible (semiconducting to semiinsulating) bulk GaAs. J. Appl. Phys. 62(7) (1987)ADSCrossRefGoogle Scholar
  7. 7.
    X. Chen, Q. Zhuang, H. Alradhi, ZhM Jin, L. Zhu, X. Chen, J. Shao, Midinfrared photoluminescence up to 290 K reveals radiative mechanisms and substrate doping-type effects of InAs nanowires. Nano Lett. 17, 1545–1551 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Ji, G. Chen, N. Tang, Q. Wang, X.G. Wang, J. Shao, X.S. Chen, W. Lu, Proton-implantation-induced photoluminescence enhancement in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 82, 2802(3) (2003)ADSCrossRefGoogle Scholar
  9. 9.
    W. Lu, Y.L. Ji, G.B. Chen, N.Y. Tang, X.S. Chen, S.C. Shen, Q.X. Zhao, M. Willander, Enhancement of room-temperature photoluminescence in InAs quantum dots. Appl. Phys. Lett. 83, 4300(3) (2003)ADSGoogle Scholar
  10. 10.
    Y. Fu, H. Ågren, L. Höglund, J.Y. Andersson, C. Asplund, M. Qiu, L. Thylén, Optical reflection from excitonic quantum-dot multilayer structure. Appl. Phys. Lett. 93, 183117(3) (2008)ADSGoogle Scholar
  11. 11.
    M. Goeppert Mayer, Elementary processes with two quantum jumps. Ann. Physik (Leipzig) 9, 273–294 (1931)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961)ADSCrossRefGoogle Scholar
  13. 13.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Technical PhysicsShanghaiChina
  2. 2.Department of Applied PhysicsRoyal Institute of TechnologySolnaSweden

Personalised recommendations