Real-Time Near-Field Terahertz Field Imaging

  • Christopher G. WadeEmail author
Part of the Springer Theses book series (Springer Theses)


Terahertz induced Rydberg atomic fluorescence is photographed to make an image of a Terahertz standing wave. We measure the fluorescence spectrum and the sensitivity bandwidth, and investigate the (sub-wavelength) resolution limit set by atomic motion. The camera signal is calibrated using Rydberg electrometry. Consecutive frames from a 25 Hz video are presented, demonstrating the real-time capability of this technique.


Terahertz (THz) THz Field Rydberg Atoms Sensitivity Bandwidth Camera Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.J.L. Adam, Review of near-field terahertz measurement methods and their applications. J. Infrared Millim. Terahertz Waves 32, 976 (2011)Google Scholar
  2. 2.
    W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bitzer et al., Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial Abstract: Opt. Express 17, 1351 (2009)Google Scholar
  4. 4.
    G. Acuna et al., Surface plasmons in terahertz metamaterials. Opt. Express 16, 18745 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    O. Mitrofanov, T. Tan, P.R. Mark, B. Bowden, J.A. Harrington, Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy. Appl. Phys. Lett. 94, 171104 (2009)Google Scholar
  6. 6.
    K. Nielsen et al., Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17, 8592 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bitzer, M. Walther, Terahertz near-field imaging of metallic subwavelength holes and hole arrays. Appl. Phys. Lett. 92, 231101 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Baragwanath et al., Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source. Opt. Lett. 36, 2393 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    P. Dean et al., Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 108, 091113 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz Near-Field Nanoscopy of Nanodevices. Nano Lett. 8, 3766 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Wu, T.D. Hewitt, X.-C. Zhang, Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 69, 1026 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    A. Doi, F. Blanchard, H. Hirori, K. Tanaka, Near-field THz imaging of free induction decay from a tyrosine crystal. Opt. Express 18, 1161 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Horsley, G.-X. Du, P. Treutlein, Widefield microwave imaging in alkali vapor cells with sub-100 \(\upmu \)m resolution. New J. Phys. 17, 112002 (2015)Google Scholar
  14. 14.
    M. Drabbels, L.D. Noordam, Infrared imaging camera based on a Rydberg atom photodetector. Appl. Phys. Lett. 74, 1797 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A. Gurtler, A.S. Meijer, W.J. van der Zande, Imaging of terahertz radiation using a Rydberg atom photocathode. Appl. Phys. Lett. 83, 222 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Seo et al., Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of vectors. Opt. Express 15, 11781 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    X. Wang et al., Visualization of terahertz surface waves propagation on metal foils. Sci. Rep. 6, 18768 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    A.W. Lee, Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt Lett 30, 2563 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations