Advertisement

Terahertz Electrometry with Rydberg EIT

  • Christopher G. WadeEmail author
Chapter
  • 255 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

We use three-photon Rydberg electromagnetically induced transparency (EIT) to perform Rydberg electrometry at 0.634 THz.

Keywords

Autler-Townes Splitting Terahertz Field Transmission Line Shape Internal Attenuator Laser Beam Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.T. Simons, J.A. Gordon, C.L. Holloway, Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency. J. Appl. Phys. 120, 123103 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Sedlacek et al., Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819 (2012)CrossRefGoogle Scholar
  3. 3.
    H.Q. Fan, S. Kumar, R. Daschner, H. Kübler, J.P. Shaffer, Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett. 39, 3030 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    C.L. Holloway et al., Sub-wavelength imaging and field mapping via electromagnetically induced transparency and autler-townes splitting in rydberg atoms. Appl. Phys. Lett. 104, 244102 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Sedlacek, A. Schwettmann, H. Kübler, J.P. Shaffer, Atom-based vector microwave electrometry using rubidium rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    H. Fan et al., Effect of vapor-cell geometry on rydberg-atom-based measurements of radio-frequency electric fields. Phys. Rev. Appl. 4, 044015 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kumar, H. Fan, H.Kübler, A.J. Jahangiri, J.P. Shaffer, Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express, 25, 8625 (2017)Google Scholar
  8. 8.
    S. Kumar, H. Fan, H.Kübler, J. Sheng, J.P. Shaffer, Atom-based sensing of weak radio frequency electric fields using homodyne readout. Sci. Rep. 7, 42981 (2017)Google Scholar
  9. 9.
    H. Fan, S. Kumar, H. Kbler, J.P. Shaffer, Dispersive radio frequency electrometry using rydberg atoms in a prism-shaped atomic vapor cell. J. Phys. B 49, 104004 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C. Carr et al., Three-photon electromagnetically induced transparency using rydberg states. Opt. Lett. 37, 3858 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    I. Hughes, T. Hase, Measurements and Their Uncertainties (Oxford University Press, 2010)Google Scholar
  13. 13.
    N. Šibalić, J. Pritchard, C. Adams, K. Weatherill, ARC: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun. 220 319–331 (2017)Google Scholar
  14. 14.
    A. Rogalski, F. Sizov, Terahertz detectors and focal plane arrays. Opto-Electronics Rev. 19, 346 (2012)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations