Advertisement

Intrinsic Rydberg Optical Bistability

  • Christopher G. WadeEmail author
Chapter
  • 240 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Alkali metal atomic vapours excited to high lying Rydberg states exhibit intrinsic optical bistability which has been the subject of several recent studies [1, 2, 3, 4]. In this chapter we explore phenomena associated with Rydberg optical bistability, and compare the experimental results with simple phenomenological models. We find that critical slowing down is absent around the critical point corresponding to the onset of bistability. The presence of a spatial phase boundary is observed, which we describe with a 1D interacting-chain model. The work lays preparation for Chap.  8, in which we study Rydberg optical bistability modified by a THz field.

References

  1. 1.
    D. Weller, A. Urvoy, A. Rico, R. Löw, H. Kübler, Charge-induced optical bistability in thermal Rydberg vapor. Phys. Rev. A 94, 063820 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    C. Carr, R. Ritter, C.G. Wade, C.S. Adams, K.J. Weatherill, Nonequilibrium Phase Transition in a Dilute Rydberg Ensemble. Phys. Rev. Lett. 111, 113901 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    N.R. de Melo et al., Intrinsic optical bistability in a strongly driven Rydberg ensemble. Phys. Rev. A 93, 063863 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Ding, C. S. Adams, B. S. Shi, G. C. Guo, Non-equilibrium phase-transitions in multi-component Rydberg gases (2016), arXiv:1606.08791
  5. 5.
    I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour (Wiley, 2011)Google Scholar
  6. 6.
    P.W. Smith, J.-P. Hermann, W.J. Tomlinson, P.J. Maloney, Optical bistability at a nonlinear interface. Appl. Phys. Lett. 35, 846 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    N. Kravets et al., Bistability with optical beams propagating in a reorientational medium. Phys. Rev. Lett. 113, 023901 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    G.I. Stegeman et al., Bistability and switching in nonlinear prism coupling. Appl. Phys. Lett. 52, 869 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    F.Y. Wang, G.X. Li, H.L. Tam, K.W. Cheah, S.N. Zhu, Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal. Appl. Phys. Lett. 92, 211109 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y.-D. Kwon, M.A. Armen, H. Mabuchi, Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics. Phys. Rev. Lett. 111, 203002 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sarkar, J.S. Satchell, Optical bistability with small numbers of atoms. EPL (Europhysics Letters) 3, 797 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Savage, H.J. Carmichael, Single atom optical bistability. IEEE J. Quantum. Electron. 24, 1495 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    T.E. Lee, H. Häffner, M.C. Cross, Collective quantum jumps of rydberg atoms. Phys. Rev. Lett. 108, 023602 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H. Gibbs, S. McCall, T.N.C. Venkatesan, Differential gain and bistability using a sodium-filled fabry-perot interferometer. Phys. Rev. Lett. 36 (1976)Google Scholar
  15. 15.
    F.A. Hopf, C.M. Bowden, W.H. Louisell, Mirrorless optical bistability with the use of the local-field correction. Phys. Rev. A 29, 2591 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    R. Friedberg, S.R. Hartmann, J.T. Manassah, Mirrorless optical bistability condition. Phys. Rev. A 39, 3444 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    M.P. Hehlen et al., Cooperative bistability in dense, excited atomic systems. Phys. Rev. Lett. 73, 1103 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    C.E. Burkhardt, W.P. Garver, V.S. Kushawaha, J.J. Leventhal, Ion formation in sodium vapor containing Rydberg atoms. Phys. Rev. A 30, 652 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    R. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 24 (1954)Google Scholar
  20. 20.
    F. Gounand, M. Hugon, P.R. Fournier, J. Berlande, Superradiant cascading effects in rubidium Rydberg levels. J. Phys. B 12, 547 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    M. Reschke, Superradiance of Rydberg atoms in thermal vapour cells, Master’s thesis, Universität Stuttgart (2014)Google Scholar
  22. 22.
    N. Šibalić, C.G. Wade, C.S. Adams, K.J. Weatherill, T. Pohl, Driven-dissipative many-body systems with mixed power-law interactions: Bistabilities and temperature-driven nonequilibrium phase transitions. Phys. Rev. A 94, 011401 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    M. Marcuzzi, E. Levi, S. Diehl, J.P. Garrahan, I. Lesanovsky, Universal nonequilibrium properties of dissipative rydberg gases. Phys. Rev. Lett. 113, 210401 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    R.E. Olson, Ionization cross sections for rydberg-atom-rydberg-atom collisions. Phys. Rev. Lett. 43, 126 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    M. Hugon, F. Gounand, P.R. Fournier, Thermal collisions between highly excited and ground-state alkali atoms. J. Phys. B Atomic Mol. Phys. 13, L109 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    C. Carr, Cooperative non-equilibrium dynamics in a thermal rydberg ensemble, Ph.D. thesis, Durham University(2013)Google Scholar
  27. 27.
    R. Hanley et al. In Preparation (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations