Entanglement Measures in QFT

  • Stefan Hollands
  • Ko SandersEmail author
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 34)


In this chapter we discuss entanglement in a general setting and we review some quantitative measures of entanglement and their properties.


  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Vidal, Entanglement monotones. J. Mod. Opt. 47, 355–376 (2000)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A. 57, 3 (1998)CrossRefGoogle Scholar
  4. 4.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Lindblad, Entropy, information, and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    W.F. Stinespring, Positive functions on \(C^*\)-algebras. Proc. Ame. Math. Soc. 6, 211–216 (1955)MathSciNetzbMATHGoogle Scholar
  7. 7.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press: Cambridge, 2010)Google Scholar
  8. 8.
    G. Giedke, J.I. Cirac, The characterization of Gaussian operations and Distillation of Gaussian States. Phys. Rev. A 66, 032316 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R. Verch, R.F. Werner, Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Bell, K. Gottfried, M. Veltman, John S. Bell on the foundations of quantum mechanics (World Scientific Publishing, Singapore, 2001)CrossRefGoogle Scholar
  11. 11.
    J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247–259 (1987)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. H. Poincaré 49, 2 (1988)MathSciNetzbMATHGoogle Scholar
  14. 14.
    S.J. Summers, R. Werner, Bell’s inequalities and quantum field theory. I. General setting. J. Math. Phys. 28, 2440–2447 (1987)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    B.S. Tsirelson, Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)Google Scholar
  16. 16.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 49, 1804 (1969)Google Scholar
  17. 17.
    N. Gisin, Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.B. Plenio, S. Virmani, An Introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    J.C. Baez, T. Fritz, A Bayesian characterization of relative entropy. Theor. Appl. Categories 29, 421–456 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    H. Araki, Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Araki, Relative entropy for states of von Neumann algebras II. Publ. RIMS Kyoto Univ. 13, 173–192 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9, 165–209 (1973)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Ohya, D. Petz, Quantum Entropy and its Use, Theoretical and Mathematical Physics (Springer, Berlin, Heidelberg, 1993)CrossRefGoogle Scholar
  24. 24.
    A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in a interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.J. Donald, M. Horodecki, O. Rudolph, Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Datta, Min- and max. relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theor. 55, 2816–2826 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    K. Fredenhagen, F.-C. Greipel, Nuclearity index as a measure for entanglement Unpublished preprintGoogle Scholar
  28. 28.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras. (Academic Press: New York, I (1983), II (1986))Google Scholar
  29. 29.
    K. Fredenhagen, On the modular structure of local algebras of observables. Commun. Math. Phys. 97, 79–89 (1985)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Lechner, K. Sanders, Modular nuclearity: a generally covariant perspective. Axioms 5, 5 (2016)CrossRefGoogle Scholar
  31. 31.
    F. Hansen, The fast track to Löwner’s theorem. Lin. Alg. Appl. 438, 4557–4571 (2013)CrossRefGoogle Scholar
  32. 32.
    E.A. Carlen, Trace inequalities and entropy: An introductory course.
  33. 33.
    E.M. Rains, Bound on distillable entanglement. Phys. Rev. A 63, 019902 (2000). Phys. Rev. A 60, 179 (1999); ErratumADSCrossRefGoogle Scholar
  34. 34.
    M.M. Wolf, G. Giedke, J.I. Cirac, Extremality of Gaussian quantum states. Phys. Rev. Lett. 96, 080502 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.School of Mathematical SciencesDublin City UniversityDublinIreland

Personalised recommendations