Skip to main content

Data and Computation Movement in Fog Environments: The DITAS Approach

  • 1353 Accesses

Abstract

Data-intensive applications are becoming very important in several domains including e-health, government 2.0, smart cities, and industry 4.0. In fact, the significant increase of sensor deployment in the Internet of things (IoT) environments, in conjunction with the huge amount of data that are generated by the smart and intelligent devices such as smartphones, requires proper data management. The goal of this chapter is to focus on how to improve data management when data are produced and consumed in a Fog Computing environment, where both resources at the edge of the network (e.g., sensors and mobile devices) and resources in the cloud (e.g., virtual machines) are involved and need to operate seamlessly together. Based on the approach proposed in the European DITAS project, data and computation movement between the edge and the cloud are studied, to create a balance between such characteristics as latency and response time (when data are stored in edge-located resources) and scalability and reliability in case of data residing in the cloud. In this contribution, to enable data and computation movement, an approach based on the principles of Service-Oriented Computing applied to a Fog environment has been adopted.

Keywords

  • Fog computing
  • IoT
  • Data-intensive application
  • DITAS
  • Service-Oriented Computing
  • Data movement
  • Computation movement
  • Containerized applications
  • Virtual data container

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-94890-4_12
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-94890-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6

References

  1. Szalay A, Gray J (2020) Computing: science in an exponential world. Nature 440:413–414

    CrossRef  Google Scholar 

  2. Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323(5919):1297–1298

    CrossRef  Google Scholar 

  3. Turner V, Reinsel D, Gatz JF, Minton S (2014) The digital universe of opportunities: rich data and the increasing value of the internet of things. IDC White Paper

    Google Scholar 

  4. Plattner H, Zeier A (2012) In-memory management. Springer, Verlag

    Google Scholar 

  5. Chen CLP, Zhang C (2014) Data-intensive applications, challenges, techniques and technologies: a survey on. Inf Sci 275:314–347

    CrossRef  Google Scholar 

  6. Apache Software Foundation (2008) http://www.apache.org

  7. Marz N, Warren W (2013) Principles and best practices of scalable realtime data systems. Manning Publications, New York

    Google Scholar 

  8. OpenFog Consortium Architecture Working Group (2016) OpenFog Architecture Overview. http://www.openfogconsortium.org/ra. Accessed 31 Jan 2018

  9. Shi W, Dustdar S (2016) The promise of edge computing. Computer 49(5):78–81

    CrossRef  Google Scholar 

  10. Bermbach D, Pallas F, Garcıa Pérez D, Plebani P, Anderson M, Kat R, Tai S (2017) A research perspective on Fog Computing. ICSOC-ISYCC Workshop, Malaga

    Google Scholar 

  11. ATOS Spain (2018) http://www.ditas-project.eu

  12. Sandkuhl K (2008) Information logistics in networked organizations: selected concepts and applications. Springer, Heidelberg

    Google Scholar 

  13. MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R (2006) Reference model for service oriented architecture 1.0. Tech rep, OASIS

    Google Scholar 

  14. MongoDB Inc (2009) http://www.mongodb.com

  15. Apache Software Foundation (2008) https://cassandra.apache.org

  16. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the 1st edn of the MCC workshop on 
mobile cloud computing, pp 13–16

    Google Scholar 

  17. Plebani P, Garcia-Perez D, Anderson M, Bermbach D, Cappiello C, Kat RI, Pallas F, Pernici B, Tai S, Vitali M, (2017) Information logistics and fog computing: the ditas approach. In: Proceedings of the forum and doctoral consortium papers presented at CAISE 2017, Essen, Germany, pp 129–136. CEUR vol 1848

    Google Scholar 

  18. EU (2018) http://www.eugdpr.org/

  19. Fielding R, Taylor R (2002) Principled design of the modern web architecture. ACM Trans Internet Technology, 2(2), pp 115–150

    CrossRef  Google Scholar 

  20. Cappiello C, Pernici B, Plebani P, Vitali M (2017) Utility-driven data management for data-intensive applications in fog environments. In: Advances in Conceptual Modeling, ER Workshops, pp 216–226

    Google Scholar 

  21. Kjubernetes (2018) http://www.kubernetes.io

  22. Docker (2018) http://www.docker.com

  23. Michelberger B, Andris RJ, Girit H, Mutschler B (2013) A literature survey on information logistics. In: Proceedings of 16th international conference of business information systems, BIS 2013, Poznan, Poland, June 19–21, Springer International Publishing, Heidelberg

    CrossRef  Google Scholar 

  24. D’Andria F, Field D, Kopaneli A, Kousiouris G, Garcia-Perez D, Pernici B, Plebani P (2015) Data movement in the internet of things domain. In: Service oriented and cloud computing: 4th european conference, ESOCC 2015, Taormina, Italy, 15–17 Sep 2015, Springer, Switzerland

    CrossRef  Google Scholar 

  25. Cappiello C, Hinostroza A, Pernici B, Sami M, Henis E, Kat RI, Meth KZ, Mura M (2011) ADSC: Application-driven storage control for energy efficiency. ICT-GLOW 2011, pp 165–179

    Google Scholar 

  26. Logothetis D, Olston C, Reed B, Webb KC, Yocum K (2010) Stateful bulk processing for incremental analytics. In: Proceedings of the 1st ACM symposium on Cloud computing (SoCC’10), ACM, New York, USA, pp 51–62

    Google Scholar 

  27. Leyshock P, Maier D, Tufte K, (2014) Minimizing data movement through query transformation. In: Proceedings of IEEE international conference on (Big Data), 27–30 Oct 2014, pp 311–316

    Google Scholar 

  28. Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. Proc VLDB Endowment 5(11):1196–1207

    CrossRef  Google Scholar 

  29. Srisooksai T, Keamarungsi K, Lamsrichan P, Araki K (2012) Practical data compression in wireless sensor networks: a survey. J Netw Comput Appl 35(1):37–59

    CrossRef  Google Scholar 

  30. Lu P, Zhang L, Liu X, Yao J, Zhu Z (2015) Highly efficient data migration and backup for applications in elastic optical inter-data-center networks. IEEE Netw 29(5):36–42

    CrossRef  Google Scholar 

  31. Ho TTN, Pernici B (2015) A data-value-driven adaptation framework for energy efficiency for data intensive applications in clouds. In: Proceedings of IEEE conference on technologies for sustainability (SusTech), pp 47–52

    Google Scholar 

  32. Peng X, Pernici B (2016) Correlation-model-based reduction of monitoring data in data centers. In: Proceedings of smart cities and green ICT systems (SMARTGREENS), pp 135–153

    Google Scholar 

  33. Davis JR, Eve R (2011) Data virtualization: going beyond traditional data integration to achieve business agility. Nine Five One Press

    Google Scholar 

  34. Mousa AH, Shiratuddin N, Abu Bakar MS (2015) RGMDV: An approach to requirements gathering and the management of data virtualization projects. In: Proceedings of the 2nd innovation and analytics conference & exhibition (IACE 2015), vol 1691, AIP Publishing, New York

    Google Scholar 

  35. Hopkins B, Cullen A, Gilpin M, Evelson B, Leganza G, Cahill M (2011) Data virtualization reaches the critical mass. Forrester Report

    Google Scholar 

  36. Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. Computer 39(11):12–14

    CrossRef  Google Scholar 

  37. Sahoo SK, Agrawal G (2004) Supporting XML based high-level abstractions on HDF5 datasets: a case study in automatic data virtualization. Languages and Compilers for High Performance Computing. Springer, Heidelberg, pp 299–318

    Google Scholar 

  38. ClusterHQ (2018) https://github.com/ClusterHQ/flocker

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Plebani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Plebani, P. et al. (2018). Data and Computation Movement in Fog Environments: The DITAS Approach. In: Mahmood, Z. (eds) Fog Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-94890-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94890-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94889-8

  • Online ISBN: 978-3-319-94890-4

  • eBook Packages: Computer ScienceComputer Science (R0)