Skip to main content

Enterprise Imaging

  • Chapter
  • First Online:
Artificial Intelligence in Medical Imaging

Abstract

Since several years, there is a general trend from departmental PACS solutions to integrated, enterprise-wide image management solution. Formerly called multimedia archives, it is now known as enterprise imaging platform. Several aspects, like governance, interfaces, access and privacy rules, etc., are relevant for a successful implementation of an enterprise imaging platform. Such data repositories could be perfect sources for the development, and clinical use of AI applications assumed that the quality of information from the different image sources including metadata, annotations or reports are reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartman D, Pantanowitz L, McHugh J, Piccoli A, OLeary M, Lauro G. Enterprise implementation of digital pathology: feasibility, challenges, and opportunities. J Digit Imaging. 2017;30(5):555–60.

    Article  CAS  Google Scholar 

  2. Roth CJ, Lannum LM, Persons KR. A foundation for enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):530–8.

    Article  Google Scholar 

  3. Roth CJ, Lannum LM, Joseph CL. Enterprise imaging governance: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):539–46.

    Article  Google Scholar 

  4. Aryanto KYE, Wetering R, Broekema A, Ooijen PA, Oudkerk M. Impact of cross-enterprise data sharing on portable media with decentralised upload of DICOM data into PACS. Insights Imaging. 2014;5(1):157–64.

    Article  CAS  Google Scholar 

  5. Towbin AJ, Roth CJ, Bronkalla M, Cram D. Workflow challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):574–82.

    Article  Google Scholar 

  6. Cram D, Roth CJ, Towbin AJ. Orders- versus encounters-based image capture: implications pre- and post-procedure workflow, technical and build capabilities, resulting, analytics and revenue capture: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):559–66.

    Article  Google Scholar 

  7. DICOM. Standard. Available from: https://www.dicomstandard.org/current/.

  8. Bhargavan-Chatfield M, Morin RL. The ACR computed tomography dose index registry: the 5 million examination update. J Am Coll Radiol. 2013;10(12):980–3.

    Article  Google Scholar 

  9. Roth CJ, Lannum LM, Dennison DK, Towbin AJ. The current state and path forward for enterprise image viewing: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):567–73.

    Article  Google Scholar 

  10. Li S, Liu Y, Yuan Y, Li J, Wei L, Wang Y, et al. Implementation of enterprise imaging strategy at a Chinese Tertiary Hospital. J Digit Imaging. 2018;31:534–42.

    Article  Google Scholar 

  11. Clunie DA, Dennison DK, Cram D, Persons KR, Bronkalla MD, Primo HR. Technical challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):583–614.

    Article  Google Scholar 

  12. Vreeland A, Persons KR, Primo H, Bishop M, Garriott KM, Doyle MK, et al. Considerations for exchanging and sharing medical images for improved collaboration and patient care: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):547–58.

    Article  Google Scholar 

  13. Schwind F, Münch H, Schröter A, Brandner R, Kutscha U, Brandner A, et al. Long-term experience with setup and implementation of an IHE-based image management and distribution system in intersectoral clinical routine. Int J Comput Assist Radiol Surg. 2018; https://doi.org/10.1007/s11548-018-1819-2.

    Article  Google Scholar 

  14. Liu S, Zhou B, Xie G, Mei J, Liu H, Liu C, et al. Beyond regional health information exchange in China: a practical and industrial-strength approach. AMIA Ann Symp Proc. 2011;2011:824–33.

    Google Scholar 

  15. Balthazar P, Harri P, Prater A, Safdar NM. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol. 2018;15(3, Part B):580–6.

    Article  Google Scholar 

  16. European Society of R. Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR). Insights Imaging. 2011;2(2):103–15.

    Article  Google Scholar 

  17. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    Article  Google Scholar 

  18. Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K. Big data and machine learning—strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol. 2017;14(6):811–7.

    Article  Google Scholar 

  19. Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J. 2018;69(2):120–35.

    Article  Google Scholar 

  20. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.

    Article  Google Scholar 

  21. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.

    Article  Google Scholar 

  22. Channin DS, Mongkolwat P, Kleper V, Rubin DL. The annotation and image mark-up project. Radiology. 2009;253(3):590–2.

    Article  Google Scholar 

  23. Obuchowski NA, Reeves AP, Huang EP, et al. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res. 2014;24:68–106.

    Article  Google Scholar 

  24. Pinto Dos Santos D, Klos G, Kloeckner R, Oberle R, Dueber C, Mildenberger P. Development of an IHE MRRT-compliant open-source web-based reporting platform. Eur Radiol. 2017;27(1):424–30.

    Article  Google Scholar 

  25. Charles E, Kahn J. From images to actions: opportunities for artificial intelligence in radiology. Radiology. 2017;285(3):719–20.

    Article  Google Scholar 

  26. Dreyer KJ, Dreyer JL. Imaging informatics: lead, follow, or become irrelevant. J Am Coll Radiol. 2013;10(6):394–6.

    Article  Google Scholar 

  27. Haarbrandt B, Schreiweis B, Rey S, Sax U, Scheithauer S, Rienhoff O, et al. HiGHmed – an open platform approach to enhance care and research across institutional boundaries. Methods Inf Med. 2018;57(S 01):e66–81.

    Article  Google Scholar 

  28. Studzinski J. Bestimmung des Reifegrades der IT-gestützten klinischen Bildgebung und Befundung mit dem Digital Imaging Adoption Model (Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model: are your clinical imaging processes ready for the digital era?). Der Radiologe. 2017;57(6):466–469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mildenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mildenberger, P. (2019). Enterprise Imaging. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics