Skip to main content

The Role of Medical Image Computing and Machine Learning in Healthcare

  • Chapter
  • First Online:
Artificial Intelligence in Medical Imaging

Abstract

Medical image computing aims at developing computational strategies for robust, automated, quantitative analysis of relevant information from medical imaging data in order to support diagnosis, therapy planning and follow-up, and biomedical research. Medical image analysis is complicated by the complexity of the data itself—involving 3D tomographic images acquired with different modalities that are based on different physical principles, each with their own intrinsic characteristics and limitations, and by the complexity of the scene—involving normal and pathological anatomy and function, with complex 3D shapes and significant inter-subject variability. Hence, model-based approaches are needed that take prior knowledge about the image appearance of the relevant objects in the scene into account. These models are parameterized to deal with variability in object appearance, such that the image analysis problem can be formulated as an optimization problem of finding the model parameters that best explain the image data. Depending on the representation chosen for the model, different approaches can be discriminated. Machine learning offers the possibility to learn suitable models from previously analyzed data itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suetens P. Fundamentals of medical imaging. 3rd ed. Cambridge: Cambridge University Press; 2017.

    Book  Google Scholar 

  2. Bankman IN. Handbook of medical imaging: processing and analysis. San Diego: Academic; 2000.

    Google Scholar 

  3. Hajnal JV, Hill DLG, Hawkes DJ. Medical image registration. Boca Raton: CRC Press; 2001.

    Book  Google Scholar 

  4. Suetens P, Fua P, Hanson AJ. Computational strategies for object recognition. ACM Comput Surv. 1992;24(1):5–61.

    Article  Google Scholar 

  5. Prince SJD. Computer vision: models, learning, and inference. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  6. Greenspan H, van Ginneken B, Summers RM. Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.

    Article  Google Scholar 

  7. Zhao F, Xie X. Energy minimization in medical image analysis: methodologies & applications. Int J Numer Methods Biomed Eng. 2015;32:1–63.

    Google Scholar 

  8. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1988;1(4):321–31.

    Article  Google Scholar 

  9. Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models: their training and application. Comput Vis Image Underst. 1995;61(1):38–59.

    Article  Google Scholar 

  10. Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Med Imaging. 2001;23(6):681–5.

    Google Scholar 

  11. Osher S, Paragios N. Geometric level set methods in imaging, vision, and graphics. Berlin: Springer; 2003.

    Google Scholar 

  12. Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell. 2001;23(11):1222–39.

    Article  Google Scholar 

  13. Turk M, Pentland AP. Eigenfaces for recognition. J Cogn Neurosci. 1991;3(1):71–96.

    Article  CAS  Google Scholar 

  14. Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13:543–63.

    Article  Google Scholar 

  15. Davies R, Twining C, Taylor C. Statistical models of shape: optimisation and evaluation. Berlin: Springer; 2008.

    Book  Google Scholar 

  16. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16:187–98.

    Article  CAS  Google Scholar 

  17. Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004.

    Article  Google Scholar 

  18. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1996;18(8):712–21.

    Article  Google Scholar 

  19. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.

    Article  Google Scholar 

  20. Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging. 1999;18(10):897–908.

    Article  Google Scholar 

  21. LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  Google Scholar 

  22. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Maes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maes, F., Robben, D., Vandermeulen, D., Suetens, P. (2019). The Role of Medical Image Computing and Machine Learning in Healthcare. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics