Advertisement

Comparison of Machine Learning Approaches for Motor Imagery Based Optical Brain Computer Interface

  • Lei Wang
  • Adrian Curtin
  • Hasan Ayaz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 775)

Abstract

A Brain-computer Interface (BCI) is a system that interprets specific patterns in human brain activity, such as the intention to perform motor functions, in order to generate a signal which can be used for communication or control. Functional near infrared spectroscopy (fNIRS) is an emerging optical neuroimaging technique which is a relatively new modality for BCI systems. As such, the optimal paradigms and classification techniques for the interpretation of fNIRS-BCI systems is an area of active investigation. Presently, most fNIRS BCIs have adopted Linear Discriminant Analysis (LDA) algorithm as the primary classification approach, however other alternative methods may offer increased performance. In order to compare different algorithms, a dataset from a four-class motor imagery-based fNIRS-BCI study was re-analyzed, and we systematically compared the performance of different machine learning algorithms: Naïve Bayes (NB), LDA, Logistic Regression (LR), Support Vector Machines (SVM) and Multi-layer Perception (MLP). Our findings suggest that the LR classifier slightly outperformed other classifiers, unlike most fNIRS-BCI studies which reported LDA or SVM as the best classifier. The results presented here suggest that an LR classifier could be a potential replacement for LDA classifiers in motor imagery tasks.

Keywords

Brain-Computer Interface (BCI) Functional near-infrared spectroscopy (fNIRS) Machine learning Motor imagery 

References

  1. 1.
    Vallabhaneni, A., Wang, T., He, B.: Brain—computer interface. In: Neural Engineering, pp. 85–121. Springer, Boston (2005)Google Scholar
  2. 2.
    Naseer, N., Hong, K.-S.: fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 9, 3 (2015)Google Scholar
  3. 3.
    Coyle, S., Ward, T., Markham, C., McDarby, G.: On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25, 815 (2004)CrossRefGoogle Scholar
  4. 4.
    Allison, B.Z., Wolpaw, E.W., Wolpaw, J.R.: Brain–computer interface systems: progress and prospects. Expert Rev. Med. Devices 4, 463–474 (2007)CrossRefGoogle Scholar
  5. 5.
    Friehs, G., Penn, R.D., Park, M.C., Goldman, M., Zerris, V.A., Hochberg, L.R., Chen, D., Mukand, J., Donoghue, J.D.: Initial surgical experience with an intracortical microelectrode array for brain-computer interface applications 881. Neurosurgery 59, 481 (2006)CrossRefGoogle Scholar
  6. 6.
    Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.P., Ojemann, J.G.: Electrocorticography-based brain computer interface-the Seattle experience. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 194–198 (2006)CrossRefGoogle Scholar
  7. 7.
    Levine, S.P., Huggins, J.E., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Rohde, M.M., Passaro, E.A., Ross, D.A., Elisevich, K.V., Smith, B.J.: A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8, 180–185 (2000)CrossRefGoogle Scholar
  8. 8.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  9. 9.
    Wang, D., Miao, D., Blohm, G.: Multi-class motor imagery EEG decoding for brain-computer interfaces. Front. Neurosci. 6, 151 (2012)CrossRefGoogle Scholar
  10. 10.
    Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain–computer interface (BCI). Neuroimage 36, 581–593 (2007)CrossRefGoogle Scholar
  11. 11.
    Birbaumer, N., Murguialday, A.R., Weber, C., Montoya, P.: Neurofeedback and brain–computer interface: clinical applications. Int. Rev. Neurobiol. 86, 107–117 (2009)CrossRefGoogle Scholar
  12. 12.
    Yoo, S.-S., Fairneny, T., Chen, N.-K., Choo, S.-E., Panych, L.P., Park, H., Lee, S.-Y., Jolesz, F.A.: Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15, 1591–1595 (2004)CrossRefGoogle Scholar
  13. 13.
    Hinterberger, T., Weiskopf, N., Veit, R., Wilhelm, B., Betta, E., Birbaumer, N.: An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 971–974 (2004)CrossRefGoogle Scholar
  14. 14.
    Weiskopf, N., Mathiak, K., Bock, S.W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., Birbaumer, N.: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 966–970 (2004)CrossRefGoogle Scholar
  15. 15.
    Batula, A.M., Kim, Y.E., Ayaz, H.: Virtual and actual humanoid robot control with four-class motor-imagery-based optical brain-computer interface. In: BioMed Research International 2017 (2017)CrossRefGoogle Scholar
  16. 16.
    Batula, A.M., Mark, J., Kim, Y.E., Ayaz, H.: Developing an optical brain-computer interface for humanoid robot control. In: International Conference on Augmented Cognition, pp. 3–13. Springer, Cham (2016)Google Scholar
  17. 17.
    Batula, A.M., Ayaz, H., Kim, Y.E.: Evaluating a four-class motor-imagery-based optical brain-computer interface. In: 2014 36th Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 2000–2003. IEEE (2014)Google Scholar
  18. 18.
    Matthews, F., Pearlmutter, B.A., Wards, T.E., Soraghan, C., Markham, C.: Hemodynamics for brain-computer interfaces. IEEE Sig. Process. Mag. 25, 87–94 (2008)CrossRefGoogle Scholar
  19. 19.
    Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Birbaumer, N.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34, 1416–1427 (2007)CrossRefGoogle Scholar
  20. 20.
    Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)CrossRefGoogle Scholar
  21. 21.
    Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatr. 52, 679–693 (2002)CrossRefGoogle Scholar
  22. 22.
    Gramann, K., Fairclough, S.H., Zander, T.O., Ayaz, H.: Trends in neuroergonomics. Front. Hum. Neurosci. 11, 165 (2017)CrossRefGoogle Scholar
  23. 23.
    Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2, L14 (2005)CrossRefGoogle Scholar
  24. 24.
    Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 258–265 (2004)CrossRefGoogle Scholar
  25. 25.
    Park, C., Looney, D., ur Rehman, N., Ahrabian, A., Mandic, D.P.: Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 10–22 (2013)CrossRefGoogle Scholar
  26. 26.
    LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10, 046003 (2013)CrossRefGoogle Scholar
  27. 27.
    Batula, A.M., Mark, J.A., Kim, Y.E., Ayaz, H.: Comparison of brain activation during motor imagery and motor movement using fNIRS. Comput. Intell. Neurosci. 2017, 12 (2017)CrossRefGoogle Scholar
  28. 28.
    Barbosa, A.O., Achanccaray, D.R., Meggiolaro, M.A.: Activation of a mobile robot through a brain computer interface. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4815–4821. IEEE (2010)Google Scholar
  29. 29.
    Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE 6, e26322 (2011)CrossRefGoogle Scholar
  30. 30.
    Ge, S., Wang, R., Yu, D.: Classification of four-class motor imagery employing single-channel electroencephalography. PLoS ONE 9, e98019 (2014)CrossRefGoogle Scholar
  31. 31.
    Hashimoto, Y., Ushiba, J.: EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. 124, 2153–2160 (2013)CrossRefGoogle Scholar
  32. 32.
    Hsu, W.-C., Lin, L.-F., Chou, C.-W., Hsiao, Y.-T., Liu, Y.-H.: EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst. 19, 566–579 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Stankevich, L., Sonkin, K.: Human-robot interaction using brain-computer interface based on eeg signal decoding. In: International Conference on Interactive Collaborative Robotics, pp. 99–106. Springer, Cham (2016)Google Scholar
  34. 34.
    Naseer, N., Hong, K.-S.: Classification of functional near-infrared spectroscopy signals corresponding to the right-and left-wrist motor imagery for development of a brain–computer interface. Neurosci. Lett. 553, 84–89 (2013)CrossRefGoogle Scholar
  35. 35.
    Shin, J., Jeong, J.: Multiclass classification of hemodynamic responses for performance improvement of functional near-infrared spectroscopy-based brain–computer interface. J. Biomed. Opt. 19, 067009 (2014)CrossRefGoogle Scholar
  36. 36.
    Coyle, S.M., Ward, T.E., Markham, C.M.: Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219 (2007)CrossRefGoogle Scholar
  37. 37.
    Ito, T., Akiyama, H., Hirano, T.: Brain machine interface using portable Near-InfraRed spectroscopy—improvement of classification performance based on ICA analysis and self-proliferating LVQ. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 851–858. IEEE (2013)Google Scholar
  38. 38.
    Noori, F.M., Naseer, N., Qureshi, N.K., Nazeer, H., Khan, R.A.: Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci. Lett. 647, 61–66 (2017)CrossRefGoogle Scholar
  39. 39.
    Naseer, N., Noori, F.M., Qureshi, N.K., Hong, K.S.: Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application. Front. Hum. Neurosci. 10, 237 (2016)CrossRefGoogle Scholar
  40. 40.
    Takizawa, R., Kasai, K., Kawakubo, Y., Marumo, K., Kawasaki, S., Yamasue, H., Fukuda, M.: Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res. 99, 250–262 (2008)CrossRefGoogle Scholar
  41. 41.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001)Google Scholar
  42. 42.
    Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid accuracy scale-up: the learning. Data Min. Vis. no. Utgo 1988 7, 1–6 (1996)Google Scholar
  43. 43.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1 (2007)CrossRefGoogle Scholar
  44. 44.
    Bashashati, H., Ward, R.K., Birch, G.E., Bashashati, A.: Comparing different classifiers in sensory motor brain computer interfaces. PLoS ONE 10, e0129435 (2015)CrossRefGoogle Scholar
  45. 45.
    Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)CrossRefGoogle Scholar
  46. 46.
    Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? ACM SIGKDD Explor. Newsl. 2, 1–13 (2000)CrossRefGoogle Scholar
  47. 47.
    Christopher, M.B.: Pattern Recognition and Machine Learning. Springer, New York (2016)Google Scholar
  48. 48.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009)CrossRefGoogle Scholar
  49. 49.
    Pohar, M., Blas, M., Turk, S.: Comparison of logistic regression and linear discriminant analysis: a simulation study. Metodoloski zvezki 1, 143 (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biomedical Engineering, Science & Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) CollaborativeDrexel UniversityPhiladelphiaUSA
  3. 3.School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Department of Family Medicine and Community HealthUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.The Division of General PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations