Towards Swarm Intelligence of Alcoholics

  • Andrew SchumannEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 881)


I distinguish the swarm behaviour from the social one. The swarm behaviour is carried out without symbolic interactions, but it is complex, as well. In this paper, I show that an addictive behaviour of humans can be considered a kind of swarm behaviour, also. The risk of predation is a main reason of reducing symbolic interactions in human group behaviours, but there are possible other reasons like addiction. An addiction increases roles of addictive stimuli (e.g. alcohol, morphine, cocaine, sexual intercourse, gambling, etc.) by their reinforcing and intrinsically rewarding and we start to deal with a swarm. I show that the lateral inhibition and lateral activation are two fundamental patterns in sensing and motoring of swarms. The point is that both patterns allow swarms to occupy several attractants and to avoid several repellents at once. The swarm behaviour of alcoholics follows the lateral inhibition and lateral activation, too. In order to formalize this intelligence, I appeal to modal logics K and its modification K’. The logic K is used to formalize preference relation in the case of lateral inhibition in distributing people to drink jointly and the logic K’ is used to formalize preference relation in the case of lateral activation in distributing people to drink jointly.



The research was carried out by the support of FP7-ICT-2011-8. This paper is an extension of [29] presented at BIOSIGNALS, 2017, Porto, Portugal. I am thankful to Vadim Fris for helping in performing this research.


  1. 1.
    Abrahams, M., Colgan, P.: Risk of predation, hydrodynamic efficiency, and their influence on school structure. Environ. Biol. Fishes 13(3), 195–202 (1985)CrossRefGoogle Scholar
  2. 2.
    Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. Int. J. Unconv. Comput. 8(4), 319–323 (2012)Google Scholar
  3. 3.
    Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics. NATO ASI Series, pp. 703–712. Springer, Heidelberg (1993). Scholar
  4. 4.
    Blumer, H.: Symbolic Interactionism; Perspective and Method. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  5. 5.
    Bull, R.A., Segerberg, K.: Basic modal logic. In: The Handbook of Philosophical Logic, vol. 2, pp. 1–88. Kluwer (1984)zbMATHGoogle Scholar
  6. 6.
    Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., et al.: Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)CrossRefGoogle Scholar
  7. 7.
    Duffy, J.E.: The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi, T. (ed.) Genes, Behavior, and Evolution in Social Insects, pp. 1–38. University of Hokkaido Press, Sapporo (2002)Google Scholar
  8. 8.
    Helbing, D., Keltsch, J., Molnar, P.: Modelling the evolution of human trail systems. Nature 388, 47–50 (1997)CrossRefGoogle Scholar
  9. 9.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)CrossRefGoogle Scholar
  10. 10.
    Jacobs, D.S., et al.: The colony structure and dominance hierarchy of the Damaraland mole-rat, Cryptomys damarensis (Rodentia: Bathyergidae) from Namibia. J. Zool. 224(4), 553–576 (1991)CrossRefGoogle Scholar
  11. 11.
    Jarvis, J.: Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212(4494), 571–573 (1981)CrossRefGoogle Scholar
  12. 12.
    Jarvis, J.U.M., Bennett, N.C.: Eusociality has evolved independently in two genera of bathyergid mole-rats but occurs in no other subterranean mammal. Behav. Ecol. Sociobiol. 33(4), 253–360 (1993)CrossRefGoogle Scholar
  13. 13.
    Jones, J.D.: Towards lateral inhibition and collective perception in unorganised non-neural systems. In: Pancerz, K., Zaitseva, E. (eds.) Computational Intelligence, Medicine and Biology. SCI, vol. 600, pp. 103–122. Springer, Cham (2015). Scholar
  14. 14.
    Kearns, D.B.: A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8(9), 634–644 (2010)CrossRefGoogle Scholar
  15. 15.
    Krützen, M., Mann, J., Heithaus, M.R., Connor, R.C., Bejder, L., Sherwin, W.B.: Cultural transmission of tool use in bottlenose dolphins. PNAS 102(25), 8939–8943 (2005)CrossRefGoogle Scholar
  16. 16.
    Michener, C.D.: Comparative social behavior of bees. Annu. Rev. Entomol. 14, 299–342 (1969)CrossRefGoogle Scholar
  17. 17.
    Nalyanya, G., Moore, C.B., Schal, C.: Integration of repellents, attractants, and insecticides in a “push-pull” strategy for managing German cockroach (Dictyoptera: Blattellidae) populations. J. Med. Entomol. 37(3), 427–434 (2000)Google Scholar
  18. 18.
    Olson, R.S., Hintze, A., Dyer, F.C., Knoester, D.B., Adami, C.: Predator confusion is sufficient to evolve swarming behaviour. J. R. Soc. Interface 10(85), 20130305 (2013)CrossRefGoogle Scholar
  19. 19.
    Parsons, T.: Social Systems and The Evolution of Action Theory. The Free Press, New York (1975)Google Scholar
  20. 20.
    Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12(2), 162–168 (2002)CrossRefGoogle Scholar
  21. 21.
    Sakiyama, T., Gunji, Y.-P.: The Müller-Lyer illusion in ant foraging. In: Hemmi, J.M. (ed.) PLoS ONE, vol. 8, no. 12, p. e81714 (2013)CrossRefGoogle Scholar
  22. 22.
    Schadschneider, A., Klingsch, W., Klpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, Berlin (2009). Scholar
  23. 23.
    Schumann, A.: On two squares of opposition: the Leniewski’s style formalization of synthetic propositions. Acta Analytica 28, 71–93 (2013)CrossRefGoogle Scholar
  24. 24.
    Schumann, A.: From swarm simulations to swarm intelligence. In: 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM (2015)Google Scholar
  25. 25.
    Schumann, A., Pancerz, K., Szelc, A.: The swarm computing approach to business intelligence. Studia Humana 4(3), 41–50 (2015)CrossRefGoogle Scholar
  26. 26.
    Schumann, A., Akimova, L.: Syllogistic system for the propagation of parasites. The Case of Schistosomatidae (Trematoda: Digenea). Stud. Log. Gramm. Rhetor. 40(1), 303–319 (2015)Google Scholar
  27. 27.
    Schumann, A.: Syllogistic versions of go games on physarum. In: Adamatzky, A. (ed.) Advances in Physarum Machines. ECC, vol. 21, pp. 651–685. Springer, Cham (2016). Scholar
  28. 28.
    Schumann, A., Woleński, J.: Two squares of oppositions and their applications in pairwise comparisons analysis. Fundamenta Informaticae 144(3–4), 241–254 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schumann, A., Fris, V.: Swarm intelligence among humans – the case of alcoholics. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSIGNALS, (BIOSTEC 2017), vol. 4. SCITEPRESS (2017)Google Scholar
  30. 30.
    Skinner, B.F.: About Behaviorism. Random House, Inc., New York (1976)Google Scholar
  31. 31.
    Tani, I., Yamachiyo, M., Shirakawa, T., Gunji, Y.-P.: Kanizsa illusory contours appearing in the plasmodium pattern of Physarum polycephalum. Front. Cellular Infect. Microbiol. 4(10), 1–11 (2014)Google Scholar
  32. 32.
    Tsang, N., Macnab, R., Koshland, D.E.: Common mechanism for repellents and attractants in bacterial chemotaxis. Science 181(4094), 60–63 (1973)CrossRefGoogle Scholar
  33. 33.
    Viscido, S., Parrish, J., Grunbaum, D.: Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar. Ecol. Prog. Ser. 273, 239–249 (2004)CrossRefGoogle Scholar
  34. 34.
    Whiten, A., Goodall, J., McGrew, W.C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C.E., Wrangham, R.W., Boesch, C.: Cultures in chimpanzees. Nature 399(6737), 682–685 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Information Technology and Management in RzeszowRzeszowPoland

Personalised recommendations