Skip to main content

Convolutional Neural Network Based Segmentation of Demyelinating Plaques in MRI

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2017)

Abstract

In this paper a new architecture of convolutional neural networks is proposed. It is a fully-convolutional architecture which allows to keep the size of the processed image constant. This, in consequence, allows to apply it for image segmentation tasks where for a given image a mask representing sought regions should be produced. An additional advantage of this architecture is its ability to learn from smaller images which reduces the amount of data that must be propagated through the network. The trained network can be still applied to images of any size. The proposed method was used for automatic localization of demyelinating plaques in head MRI sequences. This work was possible, which should be emphasized, only thanks to the manually outlined plaques provided by radiologist. To present characteristic of the considered approach three architectures and three result evaluation methods were discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomczyk, A., Spurek, P., Podgórski, M., Misztal, K., Tabor, J.: Detection of elongated structures with hierarchical active partitions and CEC-based image representation. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 159–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26227-7_15

    Chapter  Google Scholar 

  2. Tomczyk, A., Szczepaniak, P.S.: Adaptive potential active contours. Pattern Anal. Appl. 14, 425–440 (2011)

    Article  MathSciNet  Google Scholar 

  3. de Brebisson, A., Montana, G.: Deep Neural Networks for Anatomical Brain Segmentation. ArXiv e-prints arXiv:1502.02445 (2015)

  4. Shelhamer, E., Long, J., Darrell, T.: Fully Convolutional Networks for Semantic Segmentation. ArXiv e-prints arXiv:1605.06211 (2016)

  5. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. ArXiv e-prints arXiv:1606.04797 (2016)

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv e-prints arXiv:1505.04597 (2015)

    Google Scholar 

  7. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  9. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)

    Google Scholar 

  10. Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1237–1242. AAAI Press (2011)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  12. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. CoRR abs/1311.2901 (2013)

    Google Scholar 

  13. Nguyen, T.V., Lu, C., Sepulveda, J., Yan, S.: Adaptive nonparametric image parsing. CoRR abs/1505.01560 (2015)

    Article  Google Scholar 

  14. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54, 7405–7415 (2016)

    Article  Google Scholar 

  15. Mopuri, K.R., Babu, R.V.: Object level deep feature pooling for compact image representation. CoRR abs/1504.06591 (2015)

    Google Scholar 

  16. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16, 555–559 (2003)

    Article  Google Scholar 

  17. Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff segmentation. CoRR abs/1412.1283 (2014)

    Google Scholar 

  18. Stasiak, B., Tarasiuk, P., Michalska, I., Tomczyk, A., Szczepaniak, P.: Localization of demyelinating plaques in MRI using convolutional neural networks. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), BIOIMAGING, vol. 2, pp. 55–64. SCITEPRESS (2017)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. CoRR abs/1502.01852 (2015)

    Google Scholar 

  20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Article  Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

Download references

Acknowledgements

This project has been partly funded with support from National Science Centre, Republic of Poland, decision number DEC-2012/05/D/ST6/03091.

Authors would like to express their gratitude to the Department of Radiology of Barlicki University Hospital in Lodz for making head MRI sequences available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Tomczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stasiak, B., Tarasiuk, P., Michalska, I., Tomczyk, A., Szczepaniak, P.S. (2018). Convolutional Neural Network Based Segmentation of Demyelinating Plaques in MRI. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics