Skip to main content

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 7))

Abstract

Biofuel as a renewable energy, can be produced from many resources, but the easiest, safest, and most economic resources used are organisms—natural materials like algae—especially microscopic organisms. Microalgae are characterized by their ability to be grown both naturally and quickly, and represent a source of carotenoids, lipids, and polysaccharides. Chlamydomonas reinhardtii, Dunaliella salina, and various Chlorella species permit the extraction of about 5–7% biodiesel from their cells. Producing bioethanol to a higher concentration of 60% can be obtained using Chlorococum sp. The best technique for using microalgae to produce biofuel as biodiesel and bioethanol is a biochemical technique, that is, the photo-fermentation technique used to produce biohydrogen. The biochemical technique uses a process known as pyrolysis in which biomass is heated, in the absence of air, to temperatures above 500 ℃ for short periods (a few minutes). Also, C. reinhardtii can generate high condensation levels of biohydrogen. To produce biohydrogen, a quick fermentation process is required using non-sulfur bacteria, with light as an energy source, to produce organic acids by dark fermentation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of alga biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807–1836

    Google Scholar 

  • Ahmed II, Gupta AK (2010) Pyrolysis and gasification of food waste: syngas characteristics and char gasification kinetics. Appl Energy 87:101–108

    Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Google Scholar 

  • Alba LG, Torri C, Samori C, Van der Spek J, Fabbri D, Kersten SRA, Brilman DWF (2012) Hydrothermal treatment of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 26:642–657

    Google Scholar 

  • Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Luminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol 102:4876–4883

    Google Scholar 

  • Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of UlvaLactuce: bio-mass yield, methane production and combustion. Bioresour Technology 102:2595–2604

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algae feedstocks. Appl Energy 102:1371–1381

    Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057

    Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18

    Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer Science & Business Media, Berlin

    Google Scholar 

  • Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energy Convers Manag 52(4):1815–1828

    Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J. Eng. Sci. Technol. 3:1749–1755

    Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48:126–144

    Google Scholar 

  • Hall J, Payne G (1997) Factors controlling the growth of field population of Hydrodictyon reticulatum in New Zealand. J Appl Phycol 9:229–236

    Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774

    Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalga biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    Google Scholar 

  • Hirano A, Ueda R, Hirayama S (1997) CO2 fixation and ethanol production with microalga photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Google Scholar 

  • Hossain S, Salleh A (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    Google Scholar 

  • Hossain NB, Basu JK, Mamun M (2015) The production of ethanol from microalgae Spirulina. Procedia Eng 106:733–738

    Google Scholar 

  • Huesemann M, Roesjadi G, Benemann J, Metting FB (2010) Biofuels from microalgae and seaweeds. In: Biomass to biofuels. Blackwell Publishing Ltd.: Oxford, UK, pp. 165–184

    Google Scholar 

  • Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25:5472–5482

    Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalga biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Google Scholar 

  • Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2002) Preparation and characterization of biodiesels from various bio-oils. Bioresour Technol 80:53–62

    Google Scholar 

  • Li L, Rowbotham JS, Greenwell CH, Dyer PW (2013) An introduction to pyrolysis and catalytic pyrolysis: versatile techniques for biomass conversion. In: Suib SL, Elsevier Ed (eds) New and future developments in catalysis: catalytic biomass conversion. Amsterdam, The Netherlands, pp 173–208

    Google Scholar 

  • Liau BC, Shen CT, Liang FP, Hong SE, Hsu SL, Jong TT, Chang CM (2010) Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. J Supercrit Fluids 55:169–175

    Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33(1):279–286

    Google Scholar 

  • Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sustain Energy Rev 27:11–19

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications. Renew Sustain Energy Rev 14:217–232

    Google Scholar 

  • Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energy 34:7404–7416

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 3): Gasification technologies. Bioresour Technol 83:55–63

    Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Bio Med Res Int 2015:519–513

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Technol 66:486–496

    Google Scholar 

  • Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae—derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222

    Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from alga cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    Google Scholar 

  • Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, De Nys R (2014) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341

    Google Scholar 

  • Nguyen THM, Vu VH (2012) Bioethanol production from marine algae biomass: prospect and troubles. J Viet Environ 3(1):25–29

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resour Res 14:65–76

    Google Scholar 

  • Pinto FAL, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hyd Ener 27:1257–1264

    Google Scholar 

  • Rösch C, Skarka J, Wegerer N (2012) Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresour Technol 107:191–199

    Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289

    Google Scholar 

  • Saifuddin N, Priatharsini P (2016) Developments in bio-hydrogen production from algae: a review. Res J Appl Sci Eng Technol 12(9):968–982

    Google Scholar 

  • Schara V, Maeda GT, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1(2):107–125

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Google Scholar 

  • Shaishav S, Singh RN, Satyendra T (2013) Biohydrogen from Algae: Fuel of the Future. Int Res J Environ Sci 2(4):44–47

    Google Scholar 

  • Sharif ABMH, Nasrulhaq AB, Majid HAM, Chandran S, Zuliana R (2007) Biodiesel production from waste cooking oil as environmental benefits and recycling process. A review. Asia Biofuel Conference Book. Dec 11–13, Singapore

    Google Scholar 

  • Sharma A, Arya SK (2017) Hydrogen from alga biomass: a review of production process. Biotechnol Rep 15:63–69

    Google Scholar 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘Promising’ alternative and renewable energy. Review. Renew Sust Energy Rev 81:743–755

    Google Scholar 

  • Sijtsma L, Swaaf ME (2004) Biotechnological production and applications of the w-3-polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Google Scholar 

  • Sutherland A, Varela J (2014) Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. i, 14. https://doi.org/10.1186/1472-6750-14-7

  • Topare NS, Rauta SJ, Renge VC, Khedkar SV, Chavan YP, Bhagat SL (2011) Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci 9(4):1746–1750

    Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted alga biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Google Scholar 

  • Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47:789–807

    Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Review: biofuel production from plant and algae biomass. Int J Hydrogen Energy 41:17257–17273

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Google Scholar 

  • Yamada T, Sakaguchi K (1982) Comparative studies on Chlorella cell walls—induction of protoplast formation. Arch Microbiol 132:10–13

    Google Scholar 

  • Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolysable polysaccharides. Process Biochem 46(11):2111–2116

    Google Scholar 

  • Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels 24:4054–4061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AbdelGawad Saad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amer, M., Saad, A., Ismail, N.K. (2019). Biofuels from Microorganisms. In: Srivastava, N., Srivastava, M., Mishra, P., Upadhyay, S., Ramteke, P., Gupta, V. (eds) Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-94797-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94797-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94796-9

  • Online ISBN: 978-3-319-94797-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics