Skip to main content

Abstract

Novelty search in evolutionary robotics measures a distance of potential novelty solutions to their k-nearest neighbors in the search space. This distance presents an additional objective to the fitness function, with which each individual in population is evaluated. In this study, the novelty search was applied within the differential evolution. The preliminary results on CEC-14 Benchmark function suite show its potential for using also in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eiben, A.E., Smith, J.E.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)

    Article  Google Scholar 

  2. Nelson, A.L.: Embodied artificial life at an impasse can evolutionary robotics methods be scaled? In: 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), Orlando, FL, pp. 25–34 (2014)

    Google Scholar 

  3. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life (ALIFE XI), pp. 329–336. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Gomes, J., Mariano, P., Christensen, A.L.: Devising effective novelty search algorithms: a comprehensive empirical study. In: Silva, S. (ed.) Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO 2015), pp. 943–950. ACM, New York (2015)

    Google Scholar 

  5. Doncieux, S., Mouret, J.B.: Behavioral diversity measures for evolutionary robotics. In: IEEE Congress on Evolutionary Computation, Barcelona, pp. 1–8 (2010)

    Google Scholar 

  6. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014)

    Article  Google Scholar 

  7. Lynch, M.: The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8, 803–813 (2007)

    Article  Google Scholar 

  8. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  9. Gomes, J., Mariano, P., Christensen, A.L.: Avoiding convergence in cooperative coevolution with novelty search. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2014), pp. 1149–1156. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)

    Google Scholar 

  10. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19, 189–223 (2011)

    Article  Google Scholar 

  11. Liapis, A., Yannakakis, G.N., Togelius, J.: Constrained novelty search: a study on game content generation. Evol. Comput. 23, 101–129 (2015)

    Article  Google Scholar 

  12. Standish, R.K.: Open-ended artificial evolution. Int. J. Comput. Intell. Appl. 3(2), 167–175 (2003)

    Article  Google Scholar 

  13. Naredo, E., Trujillo, L.: Searching for novel clustering programs. In: Blum, C. (ed.) Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO 2013), pp. 1093–1100. ACM, New York (2013)

    Google Scholar 

  14. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  15. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  16. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: IEEE Congress on Evolutionary Computation (CEC), 2014, Beijing, pp. 1658–1665 (2014)

    Google Scholar 

  17. Erlich, I., Rueda, J.L., Wildenhues, S., Shewarega, F.: Evaluating the mean-variance mapping optimization on the IEEE-CEC 2014 test suite. In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, pp. 1625–1632 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fister, I., Iglesias, A., Galvez, A., Del Ser, J., Osaba, E., Fister, I. (2018). Using Novelty Search in Differential Evolution. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94779-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94778-5

  • Online ISBN: 978-3-319-94779-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics