Multi-agent Systems Approach to Industry 4.0: Enabling Collaboration Considering a Blockchain for Knowledge Representation

  • Pedro Pinheiro
  • Mário Macedo
  • Ricardo BarbosaEmail author
  • Ricardo SantosEmail author
  • Paulo Novais
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 887)


Industrial processes are facing major changes with the arrival of a new revolution: Industry 4.0. By introducing blockchain technology on this environment, conditions are met to accelerate and improve the concepts associated with this new revolution. By looking at industries as an intelligent ambient, where there is a big amount of data being exchanged and created, is possible to gather data and create knowledge about the interactions, and other entities. In this work we propose a model that uses blockchain and multi-agent systems to help represent an entity in a network of entities and help the decision-making process by providing additional knowledge.


Industry 4.0 Blockchain Multi-agent systems Decision-making 


  1. 1.
    Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H., Noh, S.D.: Smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. - Green Technol. 3(1), 111–128 (2016)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of industrie 4.0: an outlook. Int. J. Distrib. Sens. Netw. 12(1), 3159805 (2016)CrossRefGoogle Scholar
  3. 3.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG scenarios for ambient intelligence in 2010. Society, p. 58 (2001)Google Scholar
  4. 4.
    Deloitte: Industry 4.0. Challenges and solutions for the digital transformation and use of exponential technologies. Deloitte, pp. 1–30 (2015)Google Scholar
  5. 5.
    Roland Berger Strategy Consultants, Blanchet, M., Rinn, T., de Thieulloy, G., von Thaden, G.: Industry 4.0. The new industrial revolution. How Europe will succeed (2014)Google Scholar
  6. 6.
    Qin, J., Liu, Y., Grosvenor, R.: A categorical framework of manufacturing for Industry 4.0 and beyond. Procedia CIRP 52, 173–178 (2016)CrossRefGoogle Scholar
  7. 7.
    Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: IEEE International Conference on Industrial Engineering and Engineering Management, January 2015, pp. 697–701 (2014)Google Scholar
  8. 8.
    Lee, J., Kao, H.A., Yang, S.: Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP 16, 3–8 (2014)CrossRefGoogle Scholar
  9. 9.
    Longo, F., Nicoletti, L., Padovano, A.: Smart operators in Industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 113, 144–159 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhang, F., Liu, M., Shen, W.: Operation modes of smart factory for high-end equipment manufacturing in the internet and big data era. Smc 2017.Org (2017)Google Scholar
  11. 11.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  12. 12.
    Rabah, K.: Overview of blockchain as the engine of the 4th industrial revolution. Mara Res. J. Bus. Manag. 1(1), 125–135 (2016). The Africa Premier Research Publishing Hub www.mrjournals.orgGoogle Scholar
  13. 13.
    Wright, A., De Filippi, P.: Decentralized blockchain technology and the rise of Lex Cryptographia. SSRN Electron. J. 1–58 (2015)Google Scholar
  14. 14.
    Bahga, A., Madisetti, V.K.: Blockchain platform for industrial internet of things. J. Softw. Eng. Appl. 9, 533–546 (2016)CrossRefGoogle Scholar
  15. 15.
    Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 05(09), 1–10 (2016)CrossRefGoogle Scholar
  16. 16.
    Hamilton, J.G., Lillie, S.E., Alden, D.L., Scherer, L., Oser, M., Rini, C., Tanaka, M., Baleix, J., Brewster, M., Craddock Lee, S., Goldstein, M.K., Jacobson, R.M., Myers, R.E., Zikmund-Fisher, B.J., Waters, E.A.: What is a good medical decision? A research agenda guided by perspectives from multiple stakeholders. J. Behav. Med. 40(1), 52–68 (2017)CrossRefGoogle Scholar
  17. 17.
    Santos, R., Marreiros, G., Ramos, C., Bulas-Cruz, J.: Argumentative agents for ambient intelligence ubiquitous environments. In: Proceedings of Artificial Intelligence Techniques for Ambient Intelligence. 18th European Conference on Artificial Intelligence, ECAI 2008 (2008)Google Scholar
  18. 18.
    Dean, J.W., Sharfman, M.P.: Does decision process matter? A study of strategic decision-making effectiveness. Acad. Manag. J. 39(2), 368–396 (1996)Google Scholar
  19. 19.
    Marreiros, G., Santos, R., Freitas, C., Ramos, C., Neves, J., Bulas-Cruz, J.: LAID - a smart decision room with ambient intelligence for group decision making and argumentation support considering emotional aspects. Int. J. Smart Home 2(2), 77–93 (2008)Google Scholar
  20. 20.
    Veronica, I.C., Mirela, G., Maria, B.D.: Modern approaces in the context of ambient intelligence. Ann. Univ. Oradea Econ. Sci. Ser. 18(4), 963–968 (2009)Google Scholar
  21. 21.
    Marreiros, G., Santos, R., Ramos, C., Neves, J., Novais, P., Machado, J., Bulas-Cruz, J.: Ambient intelligence in emotion based ubiquitous decision making. In: Proceeedings of the International Joint Conference on Artificial Intelligence (IJCAI 2007) - 2nd Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAm I 2007), pp. 86–91 (2007)Google Scholar
  22. 22.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  23. 23.
    Marques, M., Agostinho, C., Zacharewicz, G., Jardim-Goncalves, R.: Decentralized decision support for intelligent manufacturing in Industry 4.0. J. Ambient Intell. Smart Environ. 9(3), 299–313 (2017)CrossRefGoogle Scholar
  24. 24.
    Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M.: Industry 4.0. The future of productivity and growth in manufacturing. Boston Consulting, pp. 1–5, April 2015Google Scholar
  25. 25.
    Upasani, K., Bakshi, M., Pandhare, V., Lad, B.K.: Distributed maintenance planning in manufacturing industries. Comput. Ind. Eng. 108, 1–14 (2017)CrossRefGoogle Scholar
  26. 26.
    Dory, T., Waldbuesser, P.: Connected cognitive entity management: new challenges for executive decision-making. In: Proceedings of 6th IEEE Conference on Cognitive Infocommunications, CogInfoCom 2015, pp. 235–240 (2016)Google Scholar
  27. 27.
    Rai, A., Kannan, R.J.: Membrane computing based scalable distributed learning and collaborative decision making for cyber physical systems. In: 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 24–27 (2017)Google Scholar
  28. 28.
    Oprea, M.: Applications of multi-agent systems, pp. 239–270 (2004)Google Scholar
  29. 29.
    Eddy, Y.S., Xun, S., Eddy, Y.S.F., Member, S., Gooi, H.B., Member, S.: Multi agent system for distributed management of microgrids. IEEE Trans. Power Syst. 30(1), 24–34 (2014)CrossRefGoogle Scholar
  30. 30.
    Aldea, A., Bañares-Alcántara, R., Jiménez, L., Moreno, A., Martínez, J., Riaño, D.: The scope of application of multi-agent systems in the process industry: three case studies. Expert Syst. Appl. 26(1 SPEC.ISS.), 39–47 (2004)CrossRefGoogle Scholar
  31. 31.
    Glavic, M.: Agents and multi-agent systems: a short introduction for power engineers, pp. 1–21 (2006)Google Scholar
  32. 32.
    Zhao, J.Y., Wang, Y.J., Xi, X.: Simulation of steel production logistics system based on multi-agents. Int. J. Simul. Model. 16(1), 167–175 (2017)CrossRefGoogle Scholar
  33. 33.
    Adeyeri, M.K., Mpofu, K., Adenuga Olukorede, T.: Integration of agent technology into manufacturing enterprise: a review and platform for Industry 4.0. In: Proceedings of 5th International Conference on Industrial Engineering and Operations Management, IEOM 2015 (2015)Google Scholar
  34. 34.
    Leitão, P., Maík, V., Vrba, P.: Past, present, and future of industrial agent applications. IEEE Trans. Ind. Inform. 9(4), 2360–2372 (2013)CrossRefGoogle Scholar
  35. 35.
    Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA technology: multi-agent systems for industrial logistics. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, February 2016, pp. 60–66 (2005)Google Scholar
  36. 36.
    Hernández, J.E., Mula, J., Poler, R., Lyons, A.C.: Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system. Group Decis. Negot. 23(2), 235–269 (2014)CrossRefGoogle Scholar
  37. 37.
    Marreiros, G., Santos, R., Ramos, C., Neves, J., Bulas-Cruz, J.: ABS4GD: a multi-agent system that simulates group decision processes considering emotional and argumentative aspects. In: AAAI Spring Symposium Series, pp. 88–95 (2008)Google Scholar
  38. 38.
    Marreiros, G., Santos, R., Ramos, C., Neves, J.: Context-aware emotion-based model for group decision making. IEEE Intell. Syst. Mag. 25(2), 31–39 (2010)CrossRefGoogle Scholar
  39. 39.
    Xiong, Z., Zhang, Y., Niyato, D., Wang, P., Han, Z.: When mobile blockchain meets edge computing: challenges and applications, pp. 1–17 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ESTG.IPP School of Management and TechnologyInstitute Polytechnic of PortoPortoPortugal
  2. 2.CIICESI, Center for Research and Innovation in Business Sciencesand Information SystemsPortoPortugal
  3. 3.ISLab/ALGORITMI CenterUniversity of MinhoBragaPortugal

Personalised recommendations