Skip to main content

Amplitude Amplification for Operator Identification and Randomized Classes

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10976)

Abstract

Amplitude amplification (AA) is tool of choice for quantum algorithm designers to increase the success probability of query algorithms that reads its input in the form of oracle gates. Geometrically speaking, the technique can be understood as rotation in a specific two-dimensional space. We study and use a generalized form of this rotation operator to design algorithms in a geometric manner. Specifically, we apply AA to algorithms that take their input in the form of input states and in which rotations with different angles and directions are used in a unified manner. We show that AA can be used to sequentially discriminate between two unitary operators, both without error and with bounded-error, in an asymptotically optimal manner. We also show how to reduce error probability in one and two-sided bounded error algorithms more efficiently than the usual parallel repetitions technique; in particular, errors can be completely eliminated from the exact error algorithms.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-94776-1_48
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-94776-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    A similar question on exact two-sided-error classical class was asked in http://cstheory.stackexchange.com/questions/20027.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th STOC (1996)

    Google Scholar 

  2. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    MathSciNet  CrossRef  Google Scholar 

  3. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory 5(3), 1–33 (2013)

    MathSciNet  CrossRef  Google Scholar 

  4. Kobayashi, H., Matsumoto, K., Tani, S.: Simpler exact leader election via quantum reduction. Chic. J. Theor. Comput. Sci. 2014(10) (2014)

    Google Scholar 

  5. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th STOC (2014)

    Google Scholar 

  6. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplication and estimation. Contemp. Math. 305, 53–74 (2002)

    CrossRef  Google Scholar 

  7. Yoder, T.J., Low, G.H., Chuang, I.L.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113, 210501 (2014). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.210501

    CrossRef  Google Scholar 

  8. Lipton, R.J., Regan, K.W.: Quantum Algorithms via Linear Algebra: A Primer. The MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  9. Kawachi, A., Kawano, K., Le Gall, F., Tamaki, S.: Quantum query complexity of unitary operator discrimination. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 309–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_26

    CrossRef  Google Scholar 

  10. Bera, D.: Detection and diagnosis of single faults in quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(3), 587–600 (2018)

    CrossRef  Google Scholar 

  11. Acin, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)

    CrossRef  Google Scholar 

  12. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    MathSciNet  CrossRef  Google Scholar 

  13. Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60(4), 2742 (1999)

    CrossRef  Google Scholar 

  14. Biham, E., Kenigsberg, D.: Grover’s quantum search algorithm for an arbitrary initial mixed state. Phys. Rev. A 66(6), 062301 (2002)

    CrossRef  Google Scholar 

  15. Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62(5), 052304 (2000)

    CrossRef  Google Scholar 

  16. D’Ariano, G.M., Presti, P.L., Paris, M.G.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)

    CrossRef  Google Scholar 

  17. Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)

    MathSciNet  CrossRef  Google Scholar 

  18. Bera, D.: Amplitude amplification for operator identification and randomized classes. Technical report TR14-151. Electronic Colloquium on Computational Complexity (2018)

    Google Scholar 

  19. Bera, D., Green, F., Homer, S.: Small depth quantum circuits. ACM SIGACT News 38(2), 35–50 (2007)

    CrossRef  Google Scholar 

  20. Høyer, P., de Wolf, R.: Improved quantum communication complexity bounds for disjointness and equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7_24

    CrossRef  Google Scholar 

  21. Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomials. In: Proceedings of the 16th CCC (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bera, D. (2018). Amplitude Amplification for Operator Identification and Randomized Classes. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)