Skip to main content

Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:


We provide efficient algorithms for computing compact representations of Voronoi diagrams using a convex-straight-skeleton (i.e., convex polygon offset) distance function when sites are line segments or convex polygons.

M. De—Partially supported by DST-INSPIRE Faculty Grant (DST-IFA14-ENG-75).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    If s is vertical, then we arbitrarily choose the left tangent as the upper.

  2. 2.

    This preprocessing step can probably be implemented in a more efficient way, but since it’s not the bottleneck of the algorithm, such an improvement will not affect the total running time of the algorithm for computing \(\displaystyle D_\mathcal{P}(z,s)\).


  1. Abel, Z., Demaine, E.D., Demaine, M.L., Itoh, J.-I., Lubiw, A., Nara, C., O’Rourke, J.: Continuously flattening polyhedra using straight skeletons. In: 13th Symposium on Computational Geometry (SoCG), pp. 396:396–396:405 (2014)

    Google Scholar 

  2. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: COCOON, pp. 117–126 (1996)

    Google Scholar 

  3. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  4. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi diagrams. Inf. Process. Lett. 100(6), 220–225 (2006)

    Article  MathSciNet  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)

    Book  Google Scholar 

  6. Barequet, G., De, M.: Voronoi diagram for convex polygonal sites with convex polygon-offset distance function. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 24–36. Springer, Cham (2017).

    Chapter  Google Scholar 

  7. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discret. Comput. Geom. 25(2), 271–291 (2001)

    Article  MathSciNet  Google Scholar 

  8. Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Contour interpolation by straight skeletons. Graph. Models 66(4), 245–260 (2004)

    Article  Google Scholar 

  9. Bohler, C., Cheilaris, P., Klein, R., Liu, C., Papadopoulou, E., Zavershynskyi, M.: On the complexity of higher order abstract Voronoi diagrams. Comput. Geom. 48(8), 539–551 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cheng, S.-W., Mencel, L., Vigneron, A.: A faster algorithm for computing straight skeletons. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 272–283. Springer, Heidelberg (2014).

    Chapter  Google Scholar 

  11. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  Google Scholar 

  13. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motorcycle graphs. Int. J. Comput. Geom. Appl. 22(05), 471–498 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: 20th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 18–27 (1979)

    Google Scholar 

  15. Klein, R., Wood, D.: Voronoi diagrams based on general metrics in the plane. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 281–291. Springer, Heidelberg (1988).

    Chapter  Google Scholar 

  16. Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discret. Comput. Geom. 2, 9–31 (1987)

    Article  MathSciNet  Google Scholar 

  17. McAllister, M., Kirkpatrick, D.G., Snoeyink, J.: A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discret. Comput. Geom. 15(1), 73–105 (1996)

    Article  MathSciNet  Google Scholar 

  18. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int. J. Comput. Geom. Appl. 23(6), 443–460 (2013)

    Article  MathSciNet  Google Scholar 

  19. Papadopoulou, E., Zavershynskyi, M.: The higher-order Voronoi diagram of line segments. Algorithmica 74(1), 415–439 (2016)

    Article  MathSciNet  Google Scholar 

  20. Yap, C.: An O\((n \log n)\) algorithm for the Voronoi diagram of a set of simple curve segments. Discret. Comput. Geom. 2, 365–393 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Minati De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barequet, G., De, M., Goodrich, M.T. (2018). Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics