Skip to main content

What Is ‘Galois Theory’?

  • Chapter
  • First Online:
  • 4094 Accesses

Part of the book series: Springer Undergraduate Mathematics Series ((SUMS))

Abstract

In this chapter, we are still concerned with the question of how Galois Theory became established as we look at Klein’s influence in more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is quoted in Wussing (1984, p. 274).

  2. 2.

    They are quoting from Biermann (1973/1988).

  3. 3.

    Quoted in Parshall and Rowe (1994, 201).

  4. 4.

    Recall that the metacyclic case is the one in which all the roots are rational functions of any two of them; the best case is binomial equations.

  5. 5.

    They are the elements in H ∪ (13)H.

  6. 6.

    In modern terms, a natural irrational lies in the splitting field of the original polynomial.

  7. 7.

    Petersen was a very energetic producer of textbooks for students in Copenhagen.

  8. 8.

    See Chap. 23 below, where it is explained that these are roots of polynomial equations with coefficients taken modulo a prime; in modern terms algebraic extensions of a finite field.

  9. 9.

    An equation was said to be normal if each root of it is expressible as a polynomial function with integer coefficients of any one of them.

  10. 10.

    See the paper Hulpke (1999) and the pdf of a talk by Hulpke available at

    http://www.math.colostate.edu/~hulpke/talks/galoistalk.pdf.

  11. 11.

    See his ‘Galois group s as permutation groups’ and his ‘Recognizing Galois group s S n and A n’, and other good sources on the web. Dedekind ’s original proof has been tightened in many places; one due to Tate is on the web. http://www.math.mcgill.ca/labute/courses/371.98/tate.pdf.

References

  • Biermann, K.R.: Die Mathematik und ihre Dozenten an der Berliner Universität, 1810-1920. Stationen auf dem Wege eines mathematischen Zentrums von Weltgeltung. Akademie-Verlag, Berlin (1973/1988)

    Google Scholar 

  • Borel, É., Drach, J.: Introduction à l’étude de la théorie des nombres et à l’algèbre supérieure. Librarie Nony, Paris (1895)

    Google Scholar 

  • Cox, D.A.: Galois Theory , 2nd edn. 2012. Wiley Interscience, New York (2004)

    Google Scholar 

  • Hölder, O.: Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen. Math. Ann. 34, 26–56 (1889)

    Google Scholar 

  • Hölder, O.: Galois’sche Theorie mit Anwendungen. Encyklopädie der mathematischen Wissenschaften 1, 480–520 (1899)

    Google Scholar 

  • Hulpke, A.: Galois group s through invariant relations. Groups St. Andrews 1997 Bath, II. London Math. Soc. Lecture Note Series, vol. 261, pp. 379–393. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Netto, E.: Substitutionentheorie und ihre Anwendungen auf die Algebra. Teubner, Leipzig (1882); English transl. The Theory of Substitutions and its Applications to Algebra. P.N. Cole (transl.) The Register Publishing Company, 1892

    Google Scholar 

  • Parshall, K., Rowe, D.E.: The Emergence of the American Mathematical Research Community, 1876–1900: J. J. Sylvester, Felix Klein, and E. H. Moore. American Mathematical Society/London Mathematical Society, Providence (1994)

    Google Scholar 

  • Petri, B., Schappacher, N.: From Abel to Kronecker: Episodes from 19th Century Algebra. In: Laudal, O.A., Piene, R. (eds.) The legacy of Niels Henrik Abel: The Abel bicentennial 2002, pp. 261–262. Springer, Berlin (2002)

    Google Scholar 

  • Wiman, A.: Endliche Gruppen linearen Substitutionen. Encyklopädie der mathematischen Wissenschaften 1, 522–544 (1900)

    Google Scholar 

  • Wussing, H.: The Genesis of the Abstract Group Concept, transl. A. Shenitzer. MIT Press, Cambridge (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gray, J. (2018). What Is ‘Galois Theory’?. In: A History of Abstract Algebra. Springer Undergraduate Mathematics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-94773-0_15

Download citation

Publish with us

Policies and ethics