Skip to main content

A Model Based Approach for Complex Dynamic Decision-Making

  • Conference paper
  • First Online:
Model-Driven Engineering and Software Development (MODELSWARD 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 880))

Abstract

Current state-of-the-practice and state-of-the-art of decision-making aids are inadequate for modern organisations that deal with significant uncertainty and business dynamism. This paper highlights the limitations of prevalent decision-making aids and proposes a model-based approach that advances the modelling abstraction and analysis machinery for complex dynamic decision-making. In particular, this paper proposes a meta-model to comprehensively represent organisation, establishes the relevance of model-based simulation technique as analysis means, introduces the advancements over actor technology to address analysis needs, and proposes a method to utilise proposed modelling abstraction, analysis technique, and analysis machinery in an effective and convenient manner. The proposed approach is illustrated using a near real-life case-study from a business process outsourcing organisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hbr.org/2014/09/9-habits-that-lead-to-terrible-decisions.

  2. 2.

    https://www.gitbook.com/book/tonyclark/esl/details.

References

  1. Shapira, Z.: Organizational Decision Making. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. McDermott, T., Rouse, W., Goodman, S., Loper, M.: Multi-level modeling of complex socio-technical systems. Procedia Comput. Sci. 16, 1132–1141 (2013)

    Article  Google Scholar 

  3. Daft, R.: Organization Theory and Design. Nelson Education, Toronto (2012)

    Google Scholar 

  4. Conrath, D.W.: Organizational decision making behavior under varying conditions of uncertainty. Manag. Sci. 13(8), B-487 (1967)

    Article  Google Scholar 

  5. O’Connor, T., Wong, H.Y.: Emergent properties (2002)

    Google Scholar 

  6. Locke, E.: Handbook of Principles of Organizational Behavior: Indispensable Knowledge for Evidence-Based Management. Wiley, Hoboken (2011)

    Google Scholar 

  7. Iacob, M., Jonkers, D.H., Lankhorst, M., Proper, E., Quartel, D.D.: Archimate 2.0 Specification, Van Haren Publishing, Zaltbommel (2012)

    Google Scholar 

  8. Bernus, P., Mertins, K., Schmidt, G.: Handbook on architectures of information systems, ISBN 3-540-64453-9 (2006)

    Google Scholar 

  9. Frank, U.: Multi-perspective enterprise modeling (memo) conceptual framework and modeling languages. In: HICSS. IEEE (2002)

    Google Scholar 

  10. Yu, E., Strohmaier, M., Deng, X.: Exploring intentional modeling and analysis for enterprise architecture. In: EDOCW (2006)

    Google Scholar 

  11. OMG Document, Business Process Model and Notation (2011). http://www.omg.org/spec/BPMN/2.0/. Accessed 03 Jan 2011

  12. Meadows, D.H.: Thinking in Systems: A Primer. Chelsea Green Publishing, White River Junction (2008)

    Google Scholar 

  13. Barat, S., Kulkarni, V., Clark, T., Barn, B.: Enterprise modeling as a decision making aid: a systematic mapping study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 289–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_20

    Chapter  Google Scholar 

  14. Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., Krogstie, J., Leue, A., Matthes, F., Opdahl, A.L., Schwabe, G., Uludag, Ö., Winter, R.: Enterprise modelling for the masses – from elitist discipline to common practice. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 225–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_16

    Chapter  Google Scholar 

  15. Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for Java. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5_6

    Chapter  Google Scholar 

  16. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming. Theor. Comput. Sci. 410(2), 202–220 (2009)

    Article  MathSciNet  Google Scholar 

  17. Allen, J.: Effective Akka. O’Reilly Media Inc., Sebastopol (2013)

    Google Scholar 

  18. Agha, G.A.: Actors: A model of concurrent computation in distributed systems. No. AI-TR-844. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1985)

    Google Scholar 

  19. Zachman, J., et al.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)

    Article  Google Scholar 

  20. Rumsfeld, D.: Known and Unknown: A Memoir. Penguin, London (2011)

    Google Scholar 

  21. Sargent, R.G.: Verification and validation of simulation models. In: Winter Simulation, pp. 130–143, December 2005

    Google Scholar 

  22. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A model based realisation of actor model to conceptualise an aid for complex dynamic decision-making. In: MODELSWARD, pp. 605–616 (2017)

    Google Scholar 

  23. Thomas, M., McGarry, F.: Top-down vs. bottom-up process improvement. IEEE Softw. 11(4), 12–13 (1994)

    Article  Google Scholar 

  24. Beckermann, A., Flohr, H., Kim, J. (eds.): Emergence or Reduction?: Essays on the Prospects of Nonreductive Physicalism. Walter de Gruyter, Berlin (1992)

    Google Scholar 

  25. Camus, B., Bourjot, C., Chevrier, V.: Combining DEVS with multi-agent concepts to design and simulate multi-models of complex systems. In: Proceedings of the Symposium on Theory of Modeling & Simulation, pp. 85–90 (2015)

    Google Scholar 

  26. Siebert, J., Ciarletta, L., Chevrier, V.: Agents and artefacts for multiple models co-evolution: building complex system simulation as a set of interacting models. In: 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 509–516 (2010)

    Google Scholar 

  27. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6. AnyLogic North America, Chicago (2013)

    Google Scholar 

  28. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J. Simul. 4(3), 151–162 (2010)

    Article  Google Scholar 

  29. Rolland, C., Selmin, N., Georges, G.: Enterprise knowledge development: the process view. Inf. Manag. 36(3), 165–184 (1999)

    Article  Google Scholar 

  30. Sandkuhl, K., et al.: Enterprise Modeling. Tackling Business Challenges with the 4EM Method, vol. 309. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43725-4

  31. van Langevelde, I., Philipsen, A., Treur, J.: Formal specification of compositional architectures. In: 10th European Conference on Artificial Intelligence (1992)

    Google Scholar 

  32. Bock, A., Frank, U., Bergmann, A., Strecker, S.: Towards support for strategic decision processes using enterprise models: a critical reconstruction of strategy analysis tools. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 41–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_4

    Chapter  Google Scholar 

  33. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for systems of BDI agents. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031846

    Chapter  Google Scholar 

  34. Hewitt, C.: Actor model of computation: scalable robust information systems. arXiv:1008.1459

  35. Langley, A., et al.: Opening up decision making: The view from the black stool. Organ. Sci. 6(3), 260–279 (1995)

    Article  Google Scholar 

  36. Kulkarni, V., Barat, S., Clark, T., Barn, B.: Toward overcoming accidental complexity in organisational decision-making. In: Model Driven Engineering Languages and Systems (MODELS), pp. 368–377 (2015)

    Google Scholar 

  37. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A simulation-based aid for organisational decision-making. In: ICSOFT-EA 2016: 11th International Conference on Software Engineering and Applications (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Barat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barat, S., Kulkarni, V., Clark, T., Barn, B. (2018). A Model Based Approach for Complex Dynamic Decision-Making. In: Pires, L., Hammoudi, S., Selic, B. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2017. Communications in Computer and Information Science, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-94764-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94764-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94763-1

  • Online ISBN: 978-3-319-94764-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics