Advertisement

Marker-Assisted Breeding for Disease Resistance in Crop Plants

  • Paul Joseph CollinsEmail author
  • Zixiang Wen
  • Shichen Zhang
Chapter

Abstract

Breeding disease-resistant crop varieties is a cornerstone of disease management. Marker-assisted selection (MAS) incorporates a plethora of plant genomic resources into the process of breeding disease-resistant crops. Although there are species-specific and disease-specific considerations, much of the procedures and theory behind MAS are conserved. Using molecular markers is most likely to increase the efficiency of the breeding process in cases where disease resistance is controlled by one or few genes, and those genes have a large effect on the resistance phenotype. In cases where disease resistance is controlled by many genes of small effect, genomic selection (GS) may be more efficient than MAS or phenotypic selection. GS is an emerging technology, and many of the statistical principles and procedures are still being developed. This chapter should begin to inform breeders as to the potential and the details to consider if using a marker-assisted breeding tool in their plant breeding program.

Keywords

Marker-assisted breeding MAS Genomic selection Disease resistance Soybean cyst nematode Soybean 

References

  1. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376.  https://doi.org/10.1371/journal.pone.0003376 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhat JA, Ali S, Salgotra RK et al (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221CrossRefPubMedPubMedCentralGoogle Scholar
  3. Collard BCY, Mackill DJ (2008) Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363:557–572CrossRefGoogle Scholar
  4. Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131CrossRefGoogle Scholar
  5. Cook DE, Lee TG, Guo X et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209.  https://doi.org/10.1126/science.1228746 CrossRefPubMedGoogle Scholar
  6. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510.  https://doi.org/10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  7. de los Campos G, Vazquez A, Fernando R et al (2013a) Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet 9:e1003608CrossRefPubMedCentralGoogle Scholar
  8. de Los Campos G, Hickey JM, Pong-Wong R (2013b) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345CrossRefPubMedGoogle Scholar
  9. DePristo MA, Banks E, Poplin R et al (2011) A frame-work for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7:632–644CrossRefPubMedGoogle Scholar
  11. Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  12. Gianola D, van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grant D, Nelson RT, Cannon SB et al (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucl Acids Res 38:D843–D846.  https://doi.org/10.1093/nar/gkp798 CrossRefPubMedGoogle Scholar
  14. Habier D, Fernando RL, Kizilkaya K et al (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinform 12:186CrossRefGoogle Scholar
  15. Heffner EL, Jannink JL, Sorrells ME (2011a) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genet 4:65–75CrossRefGoogle Scholar
  16. Heffner EL, Jannink JL, Iwata H et al (2011b) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606CrossRefGoogle Scholar
  17. Heffner EL, Jannink JL, Sorrells ME (2011c) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75CrossRefGoogle Scholar
  18. Heslot N, Yang HP, Sorrells ME et al (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160CrossRefGoogle Scholar
  19. Heslot N, Rutkoski J, Poland J et al (2013) Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS One 8(9):e74612.  https://doi.org/10.1371/journal.pone.0074612 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3 2:1085–1093CrossRefPubMedGoogle Scholar
  21. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076.  https://doi.org/10.1101/gr.089516.108 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967CrossRefPubMedGoogle Scholar
  23. Jarquín D, Kocak K, Posadas L et al (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15(1):740Google Scholar
  24. Kisha TJ, Sneller CH, Diers BW (1997) Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci 37(4):1317–1325CrossRefGoogle Scholar
  25. Li Z, Sillanpää MJ (2012) Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet 125:419–435CrossRefPubMedGoogle Scholar
  26. Li YH, Zhou G, Ma J et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu S, Kandoth PK, Warren SD et al (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260PubMedGoogle Scholar
  28. Marulanda JJ, Melchinger AE, Würschum T (2015) Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breed 134:623–630CrossRefGoogle Scholar
  29. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  30. Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110(2):453–458CrossRefPubMedGoogle Scholar
  31. Mudge J, Cregan PB, Kenworthy JP et al (1997) Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci 37:1611–1615CrossRefGoogle Scholar
  32. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ornella L, Singh S, Perez P et al (2012) Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 5:136–148CrossRefGoogle Scholar
  34. Peterson BK, Weber JN, Kay EN et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135CrossRefPubMedPubMedCentralGoogle Scholar
  35. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102.  https://doi.org/10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  36. Riggs RD, Schmitt DP (1987) Nematodes. In: Wilcox JR (ed) Soybeans: improvement, production, and uses, Agron mongr, 2nd edn. ASA, CSSA, SSSA, Madison, pp 757–778Google Scholar
  37. Roy KW (1997) Fusarium solani on soybean roots: nomenclature of causal agent of sudden death syndrome and identity and relevance of F. solani form B. Plant Dis 81:259–266CrossRefGoogle Scholar
  38. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shi Z, Liu S, Noe J et al (2015) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 16:314CrossRefPubMedPubMedCentralGoogle Scholar
  40. Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8(1):e54985Google Scholar
  41. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang X, Yang Z, Xu C (2015) A comparison of genomic selection methods for breeding value prediction. Science Bulletin 60(10):925–935Google Scholar
  43. Wen Z, Boyse JF, Song Q et al (2015) Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics 16:671CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407.  https://doi.org/10.2135/cropsci2007.04.0191 CrossRefGoogle Scholar
  45. Xu X, Zeng L, al TY (2013) Pinpointing genes underlying the quantitative trait loci for root-knotnematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci 110:13469–13474CrossRefPubMedGoogle Scholar
  46. Yan J, Shah T, Warburton ML et al (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4(12):8451.  https://doi.org/10.1371/journal.pone.0008451. CrossRefGoogle Scholar
  47. Zhang Z, Hao J, Yuan J et al (2014) Phytophthora root rot resistance in soybean E00003. Crop Sci 54(2):492–499CrossRefGoogle Scholar
  48. Zhang J, Song Q, Cregan PB et al (2016) Genome wide association study, genomic prediction and marker assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129:117–130CrossRefPubMedGoogle Scholar
  49. Zhang S, Zhang Z, Bales C et al (2017a) Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32. Theor Appl Genet 130(9):1941–1952.  https://doi.org/10.1007/s00122-017-2935-z CrossRefPubMedGoogle Scholar
  50. Zhang S, Zhang Z, Wen Z et al (2017b) Fine mapping of the aphid resistance genes Rag6 and Rag3c from Glycine soja 85-32. Theor Appl Genet.  https://doi.org/10.1007/s00122-017-2979-0
  51. Zhao Y, Mette M, Gowda M et al (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645.  https://doi.org/10.1038/hdy.2014.1 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhong S, Dekkers JCM, Fernando RL et al (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paul Joseph Collins
    • 1
    Email author
  • Zixiang Wen
    • 1
  • Shichen Zhang
    • 2
  1. 1.Plant, Soil and Microbial ScienceMichigan State UniversityEast LansingUSA
  2. 2.Agronomy DepartmentKansas State UniversityManhattanUSA

Personalised recommendations