Advertisement

Genomic-Assisted Breeding in Oilseed Brassicas

  • Surinder K. SandhuEmail author
  • Gurpreet Singh
Chapter
  • 530 Downloads

Abstract

The oilseed brassicas, world’s third most important source of vegetable oil with recently gained interest as a source of biodiesel, occupy a prominent place in the world’s agrarian economy and are grown in more than 50 countries across the globe. Improvement in nutritional profiling of Brassica oil and its defatted oil cake has vastly spread the production domain of rapeseed-mustard in the world. Consistent breeding efforts led to conversion of almost all Brassica napus into present-day canola-quality cultivars, and intensification of this quality trait in Brassica juncea too is leading its expansion in drier and low rainfall areas of the world. The good agronomic performance and the energetic balance of Brassica carinata in semiarid temperate climate and under low cropping system have generated a new interest in this species as an oilseed crop. Though, a young species with a short domestication history, Brassica napus has gained a huge attention of researchers and consequently, has witnessed a steady progress during last four decades. The conventional breeding as well as modern biotechnological tools has led to the improvement of various agronomically important quantitative and qualitative characters in oilseed brassicas.

Arabidopsis, the closest relatives of Brassica species, besides evolutionary divergence, offers great potential for genetic and physical comparative mapping to identify genomic regions harboring genes of interest and to accelerate marker development, map-based gene cloning, and candidate gene identification in Brassica crops. Multinational Brassica Genome Project, initiated in January 2003, has given great impetus to the Brassica genomic research, and thereafter, availability of genome sequence information has allowed the construction of high-resolution genetic maps, delineating QTLs underlying complex quantitative economic traits and their conversion in perfect markers, and to tag genes of commercial interest. In spite of the difficulties in QTL localization in these polyploid crops, trait-associated genetic markers have been identified for yield component traits, fatty acid composition controlling domains and for a couple of biotic and abiotic stresses for applications in Brassica molecular breeding. Though, consistent improvement for productivity, oil content, oil quality and tolerance to biotic and abiotic stresses in Oilseed brassicas has been achieved but synchronous maturity, stable and practically viable male sterility systems for hybrid development, shattering resistance in B. napus, defined and efficient DH production systems, and harnessing the potential as biodiesel crops are upcoming areas of research through combination of traditional and genomic approaches.

Keywords

Genomic- assisted breeding Molecular breeding Molecular- assisted selection Oilseed brassicas Biotic stresses Abiotic stresses 

References

  1. Agnihotri A, Deepak P, Gupta K (2004) Biotechnology in quality improvement of oilseed brassicas. In: Srivastava PS, Alka N, Srivastava S (eds) Plant biotechnology and molecular markers. Springer, Netherlands, pp 144–155Google Scholar
  2. Akhatar J, Banga SS (2015) Genome-wide association mapping for grain yield components and root traits in Brassica juncea (L.) Czern&Coss. Mol Breed 35(1):48CrossRefGoogle Scholar
  3. Akhov LL, Ashe PP, Tan YTY, Datla RDR, Selvaraj GSG (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87:616–625.  https://doi.org/10.1139/B09-036 CrossRefGoogle Scholar
  4. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54.  https://doi.org/10.1186/1471-2229-10-54 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:387–391CrossRefGoogle Scholar
  6. Anonymous (2016) Package of practice for crops of Punjab, Rabi 2015–16, PAU Ludhiana. Pp 44Google Scholar
  7. Auger B, Baron C, Lucas MO, Vautrin S, Bergès H, Chalhoub B et al (2009) Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta 230:1167–1183.  https://doi.org/10.1007/s00425-009-1017-0 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Banga SS (1993) Heterosis and its utilization. In: Labana KS, Banga SK (eds) Breeding oilseed brassicas. Monogr Theor Appl Genet, vol 19. Springer, Berlin/Heidelberg/New York, pp 21–43CrossRefGoogle Scholar
  9. Banga SS, Banga SK (2009) Crop improvement strategies in rapeseed-mustard. In: Hegde DM (ed) Vegetable oil scenario: approaches to meet the growing demands. ISOR, Hyderabad, pp 13–35Google Scholar
  10. Banga SS, Banga SK, Labana KS (1983) Nucleocytoplasmic interactions in Brassica. Proceedings of the 6th International Rapeseed Conference, Paris, France, pp 602–606Google Scholar
  11. Banga SS, Labana KS, Banga SK, Sandha GS, Gupta TR (1995) PGSH 51: the first hybrid of gobhi sarson. PAU J Res 32:242CrossRefGoogle Scholar
  12. Banuelos GS, Dhillon KS, Banga SS (2013) Oilseed brassicas. In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI, Wallingford, pp 339–368CrossRefGoogle Scholar
  13. Barret P, Delourme R, Foisset N, Renard M (1998) Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. TAG Theor Appl Genet 97(5-6):828–833CrossRefGoogle Scholar
  14. Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L). TheorAppl Genet 120:271–281CrossRefGoogle Scholar
  15. Bentsink L, Yuan K, Koornneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243CrossRefPubMedGoogle Scholar
  16. Borhan MH, Brose E, Beynon JL, Holub EB (2001) White resistant (Albugo candida) resistance loci on three Arabidopsis chromosomes are closely linked to downy mildew (Peronospora parasitica) resistant loci. Mol Plant Pathol 2:87–95CrossRefPubMedGoogle Scholar
  17. Borhan M, Gunn N, Cooper A, Gulden S, Tör M, Rimmer SR, Holub EB (2008) WRR4 encodes a TIR-NB-LRR protein that confers broad-Spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol Plant-Microbe Interact 21:757–768CrossRefPubMedGoogle Scholar
  18. Bouis H (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494SCrossRefPubMedGoogle Scholar
  19. Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35(2):262–272CrossRefPubMedGoogle Scholar
  20. Burton W, Salisbury P, Potts D (2003, September) The potential of canola quality Brassica juncea as an oilseed crop for Australia. Proceeding of the 11th international rapeseed congress 1:5–7Google Scholar
  21. Busch L, Gunter V, Mentele T et al (1994) Socializing nature – technoscience and the transformation of rapeseed into canola. Crop Sci 34:607–614CrossRefGoogle Scholar
  22. Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genet 13(1):105PubMedCentralCrossRefPubMedGoogle Scholar
  23. Cardone M, Mazzoncini M, Menini S, Rocco V, Senatore A, Seggiani M, Vitolo S (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 25:623–636CrossRefGoogle Scholar
  24. Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL et al (2009) TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics 281:109–123.  https://doi.org/10.1007/s00438-008-0399-1 CrossRefPubMedGoogle Scholar
  25. Chai AL, Xie XW, Shi YX, Li BJ (2014) Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can J Plant Pathol 36:142–153CrossRefGoogle Scholar
  26. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M (2014a) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chalhoub B et al (2014b) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chauhan JS, Singh KH, Singh VV, Kumar S (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sc 81(12):1093–1109Google Scholar
  29. Chen BY, Heneen WK (1992) Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59(2–3):157–163CrossRefGoogle Scholar
  30. Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci 94(7):3442–3447CrossRefPubMedGoogle Scholar
  31. Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. TAG 115:849–858CrossRefPubMedGoogle Scholar
  32. Chen W, Zhang Y, Yao J, Ma C, Tu J, Tingdong F (2011) Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. Plant Breed 130:640–646CrossRefGoogle Scholar
  33. Chen Y, Qi L, Zhang X, Huang J, Wang J et al (2013a) Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus. Theor Appl Genet 126:2499–2509CrossRefPubMedGoogle Scholar
  34. Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL et al (2013b) Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. Plant J 74:663–677.  https://doi.org/10.1111/tpj.12151 CrossRefGoogle Scholar
  35. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118(6):1121–1131CrossRefPubMedGoogle Scholar
  36. Cheung WY, Gugel RK, Landry BS (1998) Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard (Brassica junceae (L.) Czern. and Coss.). Genome 41:626–628CrossRefGoogle Scholar
  37. Christianson JA, Rimmer SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49:3q0-41CrossRefGoogle Scholar
  38. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRefPubMedGoogle Scholar
  39. Cunmin Qu, Huiyan Zhao, Fuyou Fu, Kai Zhang, Jianglian Yuan, Liezhao Liu, Rui Wang, Xinfu Xu, Kun Lu, Jia-Na Li, (2016) Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. Frontiers in Plant Science 7Google Scholar
  40. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586PubMedCentralCrossRefPubMedGoogle Scholar
  41. Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162(2):245–250CrossRefGoogle Scholar
  42. Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109(4):747–759PubMedCentralCrossRefPubMedGoogle Scholar
  43. Dupont J, White PJ, Johnston KM et al (1989) Food safety and health effects of canola oil. J Am Coll Nutr 8:360–375CrossRefPubMedGoogle Scholar
  44. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu -INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). TAG Theor Appl Genet 97(1-2):129–134CrossRefGoogle Scholar
  45. Dion Y, Gugel RK, Rakow GFW, Seguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91(8)Google Scholar
  46. Dreyer F, Graichen K, Jung C (2001) A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed 120(6):457–462CrossRefGoogle Scholar
  47. Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977PubMedGoogle Scholar
  48. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, HarlowGoogle Scholar
  49. Ferreira M, E M, Rimmer SR, Williams PH, Osborn TC (1995a) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217.  https://doi.org/10.1094/Phyto-85-213 CrossRefGoogle Scholar
  50. Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995b) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732CrossRefPubMedGoogle Scholar
  51. Ferreria ME, Williams PH, Osborn TC (1995c) Mapping of locus controlling resistance to Albugo candida in B. napus using molecular markers. Phytopathology 85:218–220CrossRefGoogle Scholar
  52. Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tissue Org Cult 104:375–386CrossRefGoogle Scholar
  53. Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by Resequencing. G3: Genes, Genomes, Genetics 6:793–803CrossRefGoogle Scholar
  54. Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91(5)Google Scholar
  55. Fray MJ, Puangsomlee P, Goodrich J, Coupland G, Evans EJ, Arthur AE, Lydiate DJ (1997) The genetics of stamenoid petal production in oilseed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. TAG Theor Appl Genet 94(6-7):731–736CrossRefGoogle Scholar
  56. Friedt W, Snowdon RJ (2010) Oilseed rape. In: Vollmann J, Istvan R (eds) Handbook of plant breeding, vol 4: oil crops breeding, vol 4. Springer, Dordrecht, pp 91–126C. EGoogle Scholar
  57. Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125CrossRefPubMedGoogle Scholar
  58. Garg H, Sivasithamparam K, Banga SS, Barbetti MJ (2008) Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australasian. Plant Pathol 37:106–111Google Scholar
  59. Gea XT, Yu PL, Wan ZJ, You MP, Finnegan PM, Banga SS, Sandhu PS, Garg H, Salisbury PA, Barbetti MJ (2012) Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Res 127:248–258CrossRefGoogle Scholar
  60. Gebauer SK, Psota TL, Harris WS et al (2006) N-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83(6 Suppl):1526S–1535S. PubMed CrossRefPubMedGoogle Scholar
  61. Getinet A, Rakow G, Downey RK (1996) Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can J Plant Sci 76(3):387–392CrossRefGoogle Scholar
  62. Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126(3):407–417CrossRefGoogle Scholar
  63. Gillingham LG, Harris-Janz S, Jones PJH (2011) Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46:209–228CrossRefPubMedGoogle Scholar
  64. GOI (2017) In: Third advance Estimates of Production of Food grains for 2016-17. Agricultural Statistics Division, Department of Agriculture Cooperation & Farmers welfare, GOI, New Delhi. http://agricoop.nic.in/statistics/advance-estimate
  65. Gómez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, Netherlands, pp 33–58CrossRefGoogle Scholar
  66. Gomez-Campo C, Prakash S (1999) Origin and domestication. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Publishers, Amsterdam, pp 33–58CrossRefGoogle Scholar
  67. Gunstone F (2011) Vegetable oils in food technology: composition, properties and uses. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  68. Gupta US (2005) Physiology of stressed crops, volume II. Nutrient relations. Science Publishers INC, Enfield, pp 1–25Google Scholar
  69. Gyawali S, Harrington M, Durkin J, Horner K, Parkin IA, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36(6):72PubMedCentralCrossRefPubMedGoogle Scholar
  70. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefPubMedGoogle Scholar
  71. Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60(7):1953–1968CrossRefPubMedGoogle Scholar
  72. Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8:e54745.  https://doi.org/10.1371/journal.pone.0054745 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Hauser S, Stevems M, Mougel C, Smith HG, Fritsch C, Herrbach E et al (2000) Biological, serological and molecular variability suggest three distinct polerovirus species infecting beet or rape. Phytopathology 90:460–466  https://doi.org/10.1094/PHYTO.2000.90.5.460 CrossRefPubMedGoogle Scholar
  74. He Y, Wu D, Wei D et al (2017) GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci Rep 7:15971PubMedCentralCrossRefPubMedGoogle Scholar
  75. Hegi G (1919) Illustrierte Flora von Mittel-Europe, 4th edn, MunchenGoogle Scholar
  76. Heneen WK, Jørgensen RB (2001) Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome 44(6):1007–1021CrossRefPubMedGoogle Scholar
  77. Honsdorf N, Becker HC, Ecke W (2010) Association mapping for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L.). Genome 53:899–907CrossRefPubMedGoogle Scholar
  78. Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape. Genome 46(3):454–460CrossRefPubMedGoogle Scholar
  79. Hu J, Quiros C, Arus P, Strass D, Robbelen G (1995) Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet 90(2)Google Scholar
  80. Hu J, Li G, Struss D, Quiros CF (1999) SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breed 118(2):145–150CrossRefGoogle Scholar
  81. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113(3):497–507CrossRefPubMedGoogle Scholar
  82. Huang YJ, Jestin C, Welham SJ, King GJ, Manzanares-Dauleux MJ, Fitt BDL, Delourme R (2016) Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theor Appl Genet 129:169–180CrossRefPubMedGoogle Scholar
  83. Ignatov A, Artem’eva A, Hida K (2008) Origin and Expansion of Cultivated Brassica rapa in Eurasia: Linguistic Facts. V International Symposium on Brassicas and XVI International Crucifer Genetics Workshop, Brassica 2008 867. 867. 81–88.  https://doi.org/10.17660/ActaHortic.2010.867.9
  84. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J (2003) Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Gen Genomics 269(3):388–394Google Scholar
  85. Jagannath A, Arumugam N, Gupta V, Pradhan A, Burma PK, Pental D (2002) Development of transgenic barstar lines and identification of a male sterile (barnase)/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard (Brassica juncea). Curr Sci 80:46–52Google Scholar
  86. Jain RK (1978) Effect of root-knot nematode, Meloidogyne javanica on Japan sarso. Indian J Agri Res 12:92Google Scholar
  87. Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) to study the genetic diversity in Indian mustard (Brassica juncea (L) Czern and Coss) and its relationship with heterosis. Theor Appl Genet 88:116–122CrossRefPubMedGoogle Scholar
  88. Janeja HS, Banga SS, Lakshmikumaran M (2003) Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet 107(1):148–154CrossRefPubMedGoogle Scholar
  89. Jean M, Brown GG, Landry BS (1998) Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the ‘Polima’ CMS of canola (Brassica napus L.). TAG Theor Appl Genet 97(3):431–438CrossRefGoogle Scholar
  90. Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares B, Dauleux M, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287CrossRefGoogle Scholar
  91. Jiang Y, Wang JH, Yang H, Xu MY, Yuan S, Sun W, Xu WL, Xi DH, Lin HH (2010) Identification and sequence analysis of turnip mosaic virus infection on cruciferous crops in southwest of China. J Plant Pathol 92(1):241–244Google Scholar
  92. John PH, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968CrossRefGoogle Scholar
  93. Johnson GH, Keast DR, Kris-Etherton PM (2007) Dietary modeling shows that the substitution of canola oil for fats commonly used in the United States would increase compliance with dietary recommendations for fatty acids. J Am Diet Assoc 107:1726–1734CrossRefPubMedGoogle Scholar
  94. Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93(4):512–518CrossRefPubMedGoogle Scholar
  95. Kaur H, Gupta S, Kumar N, Akhatar J, Banga SS (2014) Euphytica 199:325–338.  https://doi.org/10.1007/s10681-014-1133-1 CrossRefGoogle Scholar
  96. Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414PubMedCentralCrossRefPubMedGoogle Scholar
  97. Kirk JTO, Oram RN (1981) Isolation of erucic acid-free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Aust Inst Agr Sci 47:51–52Google Scholar
  98. Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B et al (2002a) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210CrossRefGoogle Scholar
  99. Kole C, Williams PH, Rimmer SR, Osborn TC (2002b) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassicarapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45(1):22–27CrossRefPubMedGoogle Scholar
  100. Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 86:367–369CrossRefGoogle Scholar
  101. Kolte SJ (1985) Diseases of annual edible oilseed crops, rapeseed-mustard and sesame diseases. CRC Press Inc., Boca Raton, p 2Google Scholar
  102. Kris-Etherton PMAHA (1999) Science advisory: monounsaturated fatty acids and risk of cardiovascular disease. J Nutr 129:2280–2284CrossRefPubMedGoogle Scholar
  103. Kumar A, Sharma P, Thomas L, Agnihotri A, Banga S (2009) Canola cultivation in India: scenario and future strategy. 16th Australian research assembly on brassicas. Ballarat Victoria:2009Google Scholar
  104. Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA et al (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605.  https://doi.org/10.1111/nph.12043 CrossRefPubMedGoogle Scholar
  105. Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992.  https://doi.org/10.1111/pbi.1234 CrossRefPubMedGoogle Scholar
  106. Lefort-Busan M, Dattee Y, Guillot-Iemoine B (1987) Heterosis and genetic distance in rape (Brassica napus) use of kinship coefficient. Genome 29:11–18CrossRefGoogle Scholar
  107. Li YY, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aus J of Agri res 58:759–766CrossRefGoogle Scholar
  108. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L). DNA Res 21(4):355–367PubMedCentralCrossRefPubMedGoogle Scholar
  109. Li N, Shi J, Wang X, Liu G, Wang H (2014b) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L). BMC Plant Biol 4(1):114CrossRefGoogle Scholar
  110. Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z et al (2015) BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed (Brassica napus L.) by regulating the formation of functional female gametophytes. Plant Physiol 169:2744–2760PubMedCentralPubMedGoogle Scholar
  111. Liu J (1996) Development of Monogenic Lines for Resistance to from a Canadian Cultivar. Phytopathology 86(9):1000CrossRefGoogle Scholar
  112. Liu S, Wang H, Zhang J, Fitt BD, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24(3):133–144CrossRefPubMedGoogle Scholar
  113. Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci U S A 112:E5123–E5132PubMedCentralCrossRefPubMedGoogle Scholar
  114. Liu X, Huang M, Fan B, BucklerE S, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12(2):e1005767PubMedCentralCrossRefPubMedGoogle Scholar
  115. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J et al (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444PubMedCentralPubMedGoogle Scholar
  116. Lu Y-H, Arnaud D, Belcram H, et al. (2012) A Dominant Point Mutation in a RINGv E3 Ubiquitin Ligase Homoeologous Gene leads to Cleistogamy in Brassica napus. The Plant Cell. 24(12):4875–4891. https://doi.org/:10.1105/tpc.112.104315
  117. Lu K, Peng L, Zhang C, Lu J, Yang B, Xiao Z, Liang Y, Xu X, Qu C, Zhang K, Liu L (2017) Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci 8:206PubMedCentralPubMedGoogle Scholar
  118. Lydiate DJ, Rusholme Pilcher RL, Higgins EE, Walsh JA, Scoles GJ (2014) Genetic control of immunity to (TuMV) pathotype 1 in (Chinese cabbage). Genome 57(8):419–425CrossRefPubMedGoogle Scholar
  119. Mag T (1983) Canola oil processing in Canada. J Am Oil Chem Soc 60:380–384CrossRefGoogle Scholar
  120. Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113(7):1211–1220CrossRefPubMedGoogle Scholar
  121. Mahmood T, Rahman MH, Stringam G, Yeh F, Good A (2007) Quantitative trait loci for early maturity and their potential in breeding for earliness in Brassica juncea. Euphytica 154:101–111CrossRefGoogle Scholar
  122. Marjanović-Jeromela A, Atlagić J, Stojanović D, Terzić S, Mitrović P, Milovac Ž, Dedić D (2016) Achievements in NS rapeseed hybrids breeding. SelSem XXII(2):49–60Google Scholar
  123. Massand PP, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145CrossRefGoogle Scholar
  124. Mathur RS, Swarup J (1965) Bacterial diseases of oilseed crops, Indian oilseeds. Journal 9:254–256Google Scholar
  125. Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556CrossRefPubMedGoogle Scholar
  126. Molazem D, Azimi J, Marefat Ghasemi MH, Khatami A (2013) Correlation analysis in different planting dates and plant density of canola (Brassica Napus L.) varieties in Astara region. Life Science Journal 10(1s)Google Scholar
  127. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. New Eng J Med 354:1601–1613CrossRefPubMedGoogle Scholar
  128. Mun JH, Kwon SJ, Yang TJ et al (2009) Genomewide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111PubMedCentralCrossRefPubMedGoogle Scholar
  129. Negi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet 101(1–2):146–152CrossRefGoogle Scholar
  130. Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788.  https://doi.org/10.3389/fpls.2017.01788 CrossRefPubMedCentralPubMedGoogle Scholar
  131. Ni Y, Jiang H, Lei B, Li J, Chai Y (2008) Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica 159:1–16.  https://doi.org/10.1007/s10681-007-9448-9 CrossRefGoogle Scholar
  132. Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection—estimated losses in major food and cash crops, vol 808. Elsevier Science, Amsterdam  https://doi.org/10.1017/S0021859600077467 Google Scholar
  133. Oram RN, Kirk JTO (1995) Developing double low Indian mustard for the Australian Wheatbelt. In: Potter TD (ed) 10th Australian research assembly on brassicas. Struan, South Australia, pp 90–93Google Scholar
  134. Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2005) Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet 111(1):8–14CrossRefPubMedGoogle Scholar
  135. Palmer CE, Keller WA, Arnison PG (1996) Experimental haploidy in Brassica species. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 2. Kluwer, Dordrecht, pp 143–117CrossRefGoogle Scholar
  136. Panjabi P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasms of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145CrossRefGoogle Scholar
  137. Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306CrossRefPubMedGoogle Scholar
  138. Parker P (1999) The mustard industry in Australia- opportunities for a new oilseed. In: Shea G (ed) 1999 oilseed crop updates. Agriculture Western Australia, Northam, pp 12–13Google Scholar
  139. Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for Field Resistance to Blackleg across Two Genetic Backgrounds in Oilseed Rape. Crop Sci 41(1):197CrossRefGoogle Scholar
  140. Prabhu KV, Somers DJ, Rakow G, Gugel RK (1998) Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor Appl Genet 97:865–870CrossRefGoogle Scholar
  141. Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101(2):167–168CrossRefGoogle Scholar
  142. Pushpa HD, Yadava DK, Singh N, Vasudv S, Saini N, Muthusamy V, Prabhu KV (2016) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet 76(1):64–68Google Scholar
  143. Qu C, Zhao H, Fu F, Zhang K, Yuan J, Liu L, Wang R, Xu X, Lu K, Li J-N (2016) Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus. Front Plant Sci 7Google Scholar
  144. Qu YY, Mu P, Zhang HL, Chen CY, Gao YM, Tian Y et al (2008) Mapping QTL of root morphological traits at different growth stages in rice. Genetica 133:187–200CrossRefPubMedGoogle Scholar
  145. Quarrie S, Pekic Quarrie S, Radosevic R et al (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637CrossRefPubMedGoogle Scholar
  146. Rahman M, McVetty PB, Li G (2007) Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115(8):1101–1107CrossRefPubMedGoogle Scholar
  147. Rahman H, Bennett RA, Kebede B (2017) Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from Brassica oleracea. Mol Breed 37(1):5CrossRefGoogle Scholar
  148. Rahman H, Bennett RA, Kebede B (2018) Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus. PLoS One 13(1):e0189723PubMedCentralCrossRefPubMedGoogle Scholar
  149. Raman R, Raman H, Kadkol GP, Coombes N, Taylor B, Luckett D (2011) Genome-wide association analyses of loci for shatter resistance in brassicas proceedings of the Australian research assembly on brassicas, WaggaWagga. NSW, Australia, pp 36–41Google Scholar
  150. Raman R, Belinda T, Steve M, Jiri S, Paul E, Neil C, Ata R, Kurt L, David L, Neil W, Jacqueline B, David E, Xiaowu W, Harsh R (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405–418CrossRefPubMedGoogle Scholar
  151. Raman R, Diffey S, Carling J, Cowley RB, Kilian A, Luckett DJ, Raman H (2016) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67(4):298–307CrossRefGoogle Scholar
  152. Rana K, Atri C, Gupta M, Akhatar J, Sandhu PS, Kumar N, Jaswal R, Barbetti MJ, Banga SS (2017) Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Sci Rep 7(1)Google Scholar
  153. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615CrossRefPubMedGoogle Scholar
  154. Razaq M, Aslam M, Amer M, Shad SA (2011) Insect pest status of aphids on oilseed brassica crops and need for chemical control. Crop Environ 2:60–63Google Scholar
  155. Ren F, Guo Q-Q, Chang L-L, Liang C, Zhao C-Z, Zhong H, Li X-B, Herrera-Estrella L (2012) Brassica napus PHR1 Gene Encoding a MYB-Like Protein Functions in Response to Phosphate Starvation. PLoS One 7(8):e44005PubMedCentralCrossRefPubMedGoogle Scholar
  156. Renard M et al (1992) Male sterilities and F1 hybrids in Brassica. In: Dattée Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding. Springer, Berlin/HeidelbergGoogle Scholar
  157. Saharan GS, Vema PR (1992) White rusts: A review of economically important species. International Development Research Centre (IDRC), Ottawa 315e:65pGoogle Scholar
  158. Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava DK (2016) Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breed Sci 66(5):831–837  https://doi.org/10.1270/jsbbs.16132 PubMedCentralCrossRefPubMedGoogle Scholar
  159. Sarkkinen ES, Uusitupa MI, Gylling H et al (1998) Fat-modified diets influence serum concentrations of cholesterol precursors and plant sterols in hypercholesterolemic subjects. Metabolism 47:744–750CrossRefPubMedGoogle Scholar
  160. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCentralCrossRefPubMedGoogle Scholar
  161. Singh M, Rathore SS, Raja P (2014) Physiological and stress studies of different rapeseed-mustard genotypes under terminal heat stress. Int J Genet Eng Biotech 5:133–142Google Scholar
  162. Singh BK, Nandan D, Supriya A, Ram B, Kumar A, Singh T, Meena HS, Kumar V, Singh VV, Rai PK, Singh D (2015) Validation of molecular markers for marker-assisted pyramiding of white rust resistance loci in Indian mustard (Brassica juncea L.). Can J Plant Sci 95:939–945CrossRefGoogle Scholar
  163. Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122(6):1075–1090CrossRefPubMedGoogle Scholar
  164. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123(1):1–8CrossRefGoogle Scholar
  165. Somers DJ, Rakow G, Prabhu VK, Friesen KR (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44(6):1077–1082CrossRefPubMedGoogle Scholar
  166. Somers DJ, Rakow G, Rimmer SR (2002) Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theor Appl Genet 104:1121–1124CrossRefPubMedGoogle Scholar
  167. Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). TAG 79:497–506CrossRefPubMedGoogle Scholar
  168. Strelkov SE, Tewari JP (2005) Clubroot on canola in Alberta in 2003 and 2004. Can Plant Dis Surv 85:72–73Google Scholar
  169. Stringam GR, McGregor DI, Pawlowski SH (1974) Chemical and morphological characteristics associated with seed coat colour in rapeseed. In: Proceedings of the 4th International Rapeseed Conference Giessen, Germany, pp 99–108Google Scholar
  170. Sun JH, Shi L, Zhang CY, FS X (2012) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963–1973CrossRefPubMedGoogle Scholar
  171. Szadkowski E, Eber F, Huteau V et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112CrossRefPubMedGoogle Scholar
  172. Tan X, Xia Z, Zhang L, Zhang Z, Guo Z, Qi C (2009) Cloning and sequence analysis of oilseed rape (Brassica napus) SHP2 gene. Bot Stud 50:403–412Google Scholar
  173. Tang DG, Guan KL, Li L, Honn KV, Chen YQ, Rice RL, Taylor JD, Porter AT (1997) Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids. Int J Cancer 72(6):1078–1087CrossRefPubMedGoogle Scholar
  174. Tanhuanpää PK, Vilkki JP, Vilkki HJ (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed ( L.). Genome 38(2):414–416CrossRefPubMedGoogle Scholar
  175. Tao Z, Huang Y, Zhang L, Wang X, Liu G, Wang H (2017) BnLATE, a Cys2/His2-Type ZincFinger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus. PLoS One 12(1):e0168046.  https://doi.org/10.1371/journal.pone.01680 CrossRefPubMedCentralPubMedGoogle Scholar
  176. Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93(1–2):282–286CrossRefPubMedGoogle Scholar
  177. Tingdong F, Guangsheng Y, Xiaoniu Y (1990) Studies on “Three Line” Polima Cytoplasmic Male Sterility Developed in Brassica napus L. Plant Breed 104(2):115–120CrossRefGoogle Scholar
  178. U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452Google Scholar
  179. Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629CrossRefPubMedGoogle Scholar
  180. Uzunova M, Ecke W, Weissleder K, Robbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204.  https://doi.org/10.1007/BF00222202 CrossRefPubMedGoogle Scholar
  181. Varshney A, Mohapatra T, Sharma RP (2004) Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet 109:153–159CrossRefPubMedGoogle Scholar
  182. Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. TAG Theor Appl Genet 99(7-8):1149–1154CrossRefGoogle Scholar
  183. Wang H (2004) Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J oil. Crop Sci 26:98–101Google Scholar
  184. Wang X, Wang H, Long Y, Li D, Yin Y et al (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. Napus. PLoS One 8(12):e80569.  https://doi.org/10.1371/journal.pone.0080569 CrossRefPubMedCentralPubMedGoogle Scholar
  185. Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Li F, Qiong H (2016a) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493.  https://doi.org/10.1038/srep38493 CrossRefPubMedCentralPubMedGoogle Scholar
  186. Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X (2016b) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7Google Scholar
  187. Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82(1):81–92CrossRefPubMedGoogle Scholar
  188. Watts A, Singh SK, Bhadouria J, Naresh V, Bishoyi AK, Geetha KA, Chamola R, Pattanayak D, Bhat SR (2017) Brassica juncea lines with substituted chimeric GFP-CENH3 give haploid and aneuploid progenies on crossing with other lines. Front Plant Sci 7:2019PubMedCentralCrossRefPubMedGoogle Scholar
  189. Wei YL, Li JN, Lu J, Tang ZL, Pu DC, Chai YR (2007) Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep 34:105–120.  https://doi.org/10.1007/s11033-006-9024-8 CrossRefPubMedGoogle Scholar
  190. Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2015) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12501
  191. Woods DL, Capcara JJ, Downey RK (1991) The potential of mustard (Brassica juncea (L.) Coss) as an edible oil crop on the Canadian prairies. Can J Plant Sci 71:195–198CrossRefGoogle Scholar
  192. Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.A as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8(7):e67740PubMedCentralCrossRefPubMedGoogle Scholar
  193. Xiao L, Zhao H, Zhao Z, Du D, Xu L, Yao Y, Zhao Z, Xing X, Shang G, Zhao H (2013) Genetic and physical fine mapping of a multilocular gene Bjln1 in Brassica juncea to a 208-kb region. Mol Breed 32(2):373–383CrossRefGoogle Scholar
  194. Xiao Y, Cai D, Yang W, Ye W, Younas M, Wu J, Liu K (2012) Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theor Appl Genet 125(3):437–447CrossRefPubMedGoogle Scholar
  195. Xiaonan Li, Nirala Ramchiary, Vignesh Dhandapani, Su Ryun Choi, Yoonkang Hur, Ill-Sup Nou, Moo Kyoung Yoon, Yong Pyo Lim (2013) Quantitative trait loci mapping in Brassica Rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the a, B, and C subgenomes of Brassica speciesGoogle Scholar
  196. Xu BB, Li JN, Zhang XK, Wang R, Xie LL, Chai YR (2007) Cloning and molecular characterization of a functional flavonoid 3′ - hydroxylase gene from Brassica napus. J Plant Physiol 164:350–363.  https://doi.org/10.1016/j.jplph.2006.03.001 CrossRefPubMedGoogle Scholar
  197. Xu P, Cao S, Hu K, Wang X, Huang W, Wang G, Lv Z, Liu Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2017) Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Sci Rep 7:3498.  https://doi.org/10.1038/s41598-017-03755-0 CrossRefPubMedCentralPubMedGoogle Scholar
  198. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604CrossRefPubMedGoogle Scholar
  199. Yang M, Ding G, Shi L, Feng J, Xu F Jinling Meng (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121(1):181–193CrossRefPubMedGoogle Scholar
  200. Yang QY, Fan CC, Guo ZH, Qin J, Wu JZ, Li QY, Fu TD, Zhou YM (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729CrossRefPubMedGoogle Scholar
  201. Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Jinxing T, Tingdong F (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938CrossRefPubMedGoogle Scholar
  202. Yin X, Yi B, Chen W, Zhang W, Tu J, Dilantha Fernando WG, Fu T (2010) Mapping of QTLs detected in a Brassicanapus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173(1):25–35CrossRefGoogle Scholar
  203. Yun-Hai L, Arnaud D, Belcram H, Falentin C, Rouault P, Piel N, Lucas M-O, Just J, Renard M Régine Delourme, and Boulos Chalhouba (2012) A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. Plant Cell 24(12):4875–4891Google Scholar
  204. Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PBE, Li G (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563CrossRefPubMedGoogle Scholar
  205. Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705CrossRefPubMedGoogle Scholar
  206. Zhangsheng T, Huang Y, Zhang L, Wang X, Liu G, Wang H (2017) BnLATE, a Cys2/His2-type zinc-finger protein, enhances Silique shattering resistance by negatively regulating lignin accumulation in the Silique walls of Brassica napus. PLoS One.  https://doi.org/10.1371/journal.pone.0168046
  207. Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764CrossRefPubMedGoogle Scholar
  208. Zhao J, Jamar DL, Lou P et al (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900CrossRefPubMedGoogle Scholar
  209. Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516CrossRefPubMedGoogle Scholar
  210. Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973CrossRefPubMedGoogle Scholar
  211. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124(2):407–421CrossRefPubMedGoogle Scholar
  212. Zhao W, Wang X, Wang H et al (2016) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci 7:17PubMedCentralPubMedGoogle Scholar
  213. Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L). Front Plant Sci 8Google Scholar
  214. Zhou QH, Fu DH, Mason AS, Zeng YJ, Zhao CX, Huang YJ (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breed 33:881–894CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
  2. 2.PAU-Regional Research StationFaridkotIndia

Personalised recommendations