Skip to main content

Approximation Algorithms for the p-Hub Center Routing Problem in Parameterized Metric Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

  • 625 Accesses

Abstract

A complete weighted graph \(G= (V, E, w)\) is called \(\varDelta _{\beta }\)-metric, for some \(\beta \ge 1/2\), if G satisfies the \(\beta \)-triangle inequality, i.e., \(w(u,v) \le \beta \cdot (w(u,x) + w(x,v))\) for all vertices \(u,v,x\in V\). Given a \(\varDelta _{\beta }\)-metric graph \(G=(V, E, w)\), the Single Allocation at most p-Hub Center Routing problem is to find a spanning subgraph \(H^{*}\) of G such that (i) any pair of vertices in \(C^{*}\) is adjacent in \(H^{*}\) where \(C^{*}\subset V\) and \(|C^{*}|\le p\); (ii) any pair of vertices in \(V\setminus C^{*}\) is not adjacent in \(H^{*}\); (iii) each \(v\in V\setminus C^{*}\) is adjacent to exactly one vertex in \(C^{*}\); and (iv) the routing cost \(r(H^{*}) = \sum _{u,v\in V} d_{H^{*}}(u,v)\) is minimized where \(d_{H^{*}}(u,v)= w(u,f^{*}(u))+ w(f^{*}(u),f^{*}(v))+ w(v,f^{*}(v))\) and \(f^{*}(u),f^{*}(v)\) are the vertices in \(C^{*}\) adjacent to u and v in \(H^{*}\), respectively. Note that \(w(v,f^{*}(v)) = 0\) if \(v\in C^{*}\). The vertices selected in \(C^{*}\) are called hubs and the rest of vertices are called non-hubs. In this paper, we show that the Single Allocation at most p-Hub Center Routing problem is NP-hard in \(\varDelta _{\beta }\)-metric graphs for any \(\beta > 1/2\). Moreover, we give \(2\beta \)-approximation algorithms running in time \(O(n^2)\) for any \(\beta > 1/2\) where n is the number of vertices in the input graph.

This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). Research supported by the LaBRI under the “Projets émergents” program. The main work for this article was done while Li-Hsuan Chen and Ling-Ju Hung (corresponding author) were with the National Cheng Kung University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190, 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38, 59–67 (2001)

    Article  MathSciNet  Google Scholar 

  3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM J. Discrete Math. 8, 1–16 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)

    Article  MathSciNet  Google Scholar 

  5. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1_7

    Chapter  MATH  Google Scholar 

  6. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On k-edge-connectivity problems with sharpened triangle inequality. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 189–200. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44849-7_24

    Chapter  Google Scholar 

  7. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-connectivity problems with sharpened triangle inequality. J. Discrete Algorithms 6, 605–617 (2008)

    Article  MathSciNet  Google Scholar 

  8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)

    Article  MathSciNet  Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the Traveling Salesman Problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_7

    Chapter  MATH  Google Scholar 

  10. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_32

    Chapter  Google Scholar 

  11. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap. 31. Chapman & Hall/CRC (2007)

    Google Scholar 

  12. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO - Theoret. Inf. Appl. 34, 213–255 (2000)

    Article  MathSciNet  Google Scholar 

  13. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  Google Scholar 

  14. Campbell, J.F., O’Kelly, M.E.: Twenty-five years of hub location research. Transp. Sci. 46, 153–169 (2012)

    Article  Google Scholar 

  15. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for single allocation \(k\)-hub center problem. In: Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2016), pp. 13–18 (2016)

    Google Scholar 

  16. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for the star k-hub center problem in metric graphs. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 222–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1_18

    Chapter  Google Scholar 

  17. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu, B.Y.: On the complexity of the star p-hub center problem with parameterized triangle inequality. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 152–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_14

    Chapter  MATH  Google Scholar 

  18. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R.: The approximability of the p-hub center problem with parameterized triangle inequality. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 112–123. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_10

    Chapter  Google Scholar 

  19. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu, B.Y.: Approximability and inapproximability of the star \(p\)-hub center problem with parameterized triangle inequality. J. Comput. Syst. Sci. 92, 92–112 (2018)

    Article  MathSciNet  Google Scholar 

  20. Contreras, I.: Hub location problems. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 311–344. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13111-5_12

    Chapter  Google Scholar 

  21. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation \(p\)-hub center problems. Comput. Oper. Res. 36, 2230–2241 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hromkovič, J.: Stability of approximation algorithms and the knapsack problem. In: Karhumäki, J., Maurer, H., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 238–249. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60207-8_21

    Chapter  Google Scholar 

  23. Hromkovič, J.: Algorithmics for Hard Problems - Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, 2nd edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05269-3

    Book  MATH  Google Scholar 

  24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  25. Iwasa, M., Saito, H., Matsui, T.: Approximation algorithms for the single allocation problem in hub-and-spoke networks and related metric labeling problems. Discrete Appl. Math. 157, 2078–2088 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kuroki, Y., Matsui, T.: Approximation algorithms for hub location problems. In: The 9th Annual Meeting of Asian Association for Algorithms and Computation (AAAC 2016) (2016)

    Google Scholar 

  27. Lin, C.-W., Wu, B.Y.: On the minimum routing cost clustered tree problem. J. Combinat. Optim. 33, 1106–1121 (2017)

    Article  MathSciNet  Google Scholar 

  28. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The \(p\)-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179, 927–939 (2007)

    Article  MathSciNet  Google Scholar 

  29. Mömke, T.: An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality. Inf. Process. Lett. 115, 866–871 (2015)

    Article  MathSciNet  Google Scholar 

  30. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32, 393–404 (1987)

    Article  MathSciNet  Google Scholar 

  31. O’Kelly, M.E., Miller, H.J.: Solution strategies for the single facility minimax hub location problem. Pap. Reg. Sci. 70, 367–380 (1991)

    Article  Google Scholar 

  32. Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optim. Lett. 11, 1109–1121 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., Tang, C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29, 761–778 (1999)

    Article  MathSciNet  Google Scholar 

  34. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. J. Algorithms 44, 359–378 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ju Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, LH., Hsieh, SY., Hung, LJ., Klasing, R. (2018). Approximation Algorithms for the p-Hub Center Routing Problem in Parameterized Metric Graphs. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics