Exploring Interaction Design for the Social Internet of Things

  • Donald DegraenEmail author
Part of the Internet of Things book series (ITTCC)


The Social Internet of Things (SIoT) builds social capital by incorporating principles of Social Networks (SNs) into the design of the Internet of Things (IoT). With the ambition of improving network navigability and service availability, research targets granting smart objects the ability to autonomously socialize with each other. The resulting independently defined social network for things will allow devices to communicate with both human beings as well as other devices. Autonomous decisions made by social things require them to understand the context in which they operate. However, the perception and interpretation of context remains fallible. As social things act without explicitly making this visible to the user, there is an increasing inability to grasp, let alone control, what is happening behind the screens. By providing intelligibility or defining personalities, the user gains a better awareness of the system’s functionality. In this chapter, we start by providing a short history of things that socialize and review related research. By gaining insights into the nature of interaction with both the world and autonomous systems, we frame interaction challenges with social things. We look towards literature in both the SIoT and context-aware computing to outline possible design techniques for addressing these challenges. Lastly, we discuss how future work can build upon our considerations to ensure natural and intuitive interaction with the SIoT.


Social Internet Of Things (SIoT) Autonomous Socialization Smart Objects General Cyber-physical Systems Social Networking Paradigms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of the DISTRO project which is funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642841.


  1. 1.
    Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In: Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing (pp. 304–307). Springer, London, UK, UK, HUC ’99.CrossRefGoogle Scholar
  2. 2.
    Asl, H. Z., Iera, A., Atzori, L., & Morabito, G. (2013, December). How often social objects meet each other? Analysis of the properties of a social network of IoT devices based on real data. In Global Communications Conference (GLOBECOM), 2013 IEEE (pp. 2804–2809).
  3. 3.
    Atzori, L., Iera, A., Morabito, G. (2011) Making things socialize in the internet–does it help our lives? In: Proceedings of ITU Kaleidoscope 2011: The Fully Networked Human?—Innovations for Future Networks and Services (K-2011) (pp. 1–8).Google Scholar
  4. 4.
    Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (siot) when social networks meet the internet of things: Concept, architecture and network characterization. Computer Networks, 56(16), 3594–3608. Scholar
  5. 5.
    Atzori, L., Iera, A., & Morabito, G. (2014). From “smart objects” to “social objects”: The next evolutionary step of the internet of things. IEEE Communications Magazine, 52(1), 97–105. Scholar
  6. 6.
    Ball, M., Callaghan, V., & Gardner, M. (2010, July). An adjustable-autonomy agent for intelligent environments. In 2010 Sixth International Conference on Intelligent Environments (IE) (pp. 1–6).
  7. 7.
    Bau, O., Mackay, W. E. (2008). Octopocus: A dynamic guide for learning gesture-based command sets. In Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (pp. 37–46). ACM, New York, NY, USA, UIST ’08.
  8. 8.
    Bellotti, V., & Edwards, K. (2001). Intelligibility and accountability: Human considerations in context-aware systems. Human-Computer Interaction, 16(2–4), 193–212. Scholar
  9. 9.
    Cauchard, J. R., Zhai, K. Y., Spadafora, M., Landay, J. A. (2016). Emotion encoding in human-drone interaction. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 263–270).
  10. 10.
    Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95–S120.CrossRefGoogle Scholar
  11. 11.
    Coutaz, J. (2007). Meta-user interfaces for ambient spaces. In K. Coninx, K. Luyten, & K. A. Schneider (Eds.), Task Models and Diagrams for Users Interface Design: 5th International Workshop, TAMODIA 2006, Hasselt, Belgium, October 23–24, 2006 (pp. 1–15). Springer, Berlin Heidelberg, Berlin, Heidelberg: Revised Papers.
  12. 12.
    Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7. Scholar
  13. 13.
    Dey, A. K., & Mankoff, J. (2005). Designing mediation for context-aware applications. ACM Trans Comput-Hum Interact, 12(1), 53–80. Scholar
  14. 14.
    Dey, A. K., Newberger, A. (2009). Support for context-aware intelligibility and control. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’09, pp. 859–868,
  15. 15.
    Dourish, P. (1995). Developing a reflective model of collaborative systems. ACM Trans Comput-Hum Interact, 2(1), 40–63. Scholar
  16. 16.
    Fiske, A. P. (1992). The four elementary forms of sociality: Framework for a unified theory of social relations.,. Scholar
  17. 17.
    Greenberg, S. (2001). Context as a dynamic construct. Human-Computer Interaction, 16(2–4), 257–268. Scholar
  18. 18.
    Hassenzahl, M. (2010). Experience Design: technology for all the right reasons. Morgan and Claypool Publishers.CrossRefGoogle Scholar
  19. 19.
    Holmquist, L. E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., & Gellersen, H. W. (2001, September). Smart-its friends: A technique for users to easily establish connections between smart artefacts. In International Conference on Ubiquitous Computing (pp. 116–122). Springer, Berlin, Heidelberg.Google Scholar
  20. 20.
    Hupfeld, F., & Beigl, M. (2000). Spatially aware local communication in the RAUM system. In International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services (pp. 285–296). Springer, Berlin, Heidelberg. Scholar
  21. 21.
    Kim, J. E., Maron, A., & Mosse, D. (2015). Socialite: A flexible framework for social internet of things. In 2015 16th IEEE International Conference on Mobile Data Management (MDM), (Vol. 1, pp. 94–103).
  22. 22.
    Kim, J. E., Fan, X., & Mosse, D. (2017). Empowering End Users for Social Internet of Things. In Proceedings of the Second International Conference on Internet-of-Things Design and Implementation (pp. 71–82).
  23. 23.
    Lenz, E., Diefenbach, S., & Hassenzahl, M. (2013). Exploring relationships between interaction attributes and experience. In Proceedings of the 6th International Conference on Designing Pleasurable Products and Interfaces (pp. 126–135),
  24. 24.
    McAdams, D. P., & Pals, J. L. (2006). A new Big Five: Fundamental principles for an integrative science of personality.,. Scholar
  25. 25.
    Meerbeek, B., Saerbeck, M., & Bartneck, C. (2009). Iterative design process for robots with personality. In Proceedings of the AISB2009 Symposium on New Frontiers in Human-Robot Interaction Edingburgh (Vol. 94, p. 101).Google Scholar
  26. 26.
    Mennicken, S., Vermeulen, J., & Huang, E. M. (2014). From today’s augmented houses to tomorrow’s smart homes: new directions for home automation research. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 105–115). DOI
  27. 27.
    Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. The Academy of Management Review, 23(2), 242–266.CrossRefGoogle Scholar
  28. 28.
    Ning, H., Liu, H., Ma, J., Yang, L. T., & Huang, R. (2016). Cybermatics: Cyber-physical-social-thinking hyperspace based science and technology. Future Generation Computer Systems, 56, 504–522. Scholar
  29. 29.
    Norman, D. (2001). How might humans interact with robots?
  30. 30.
    Norman, D. A. (2003). Emotional design: why we love (or hate) everyday things. Basic Books (AZ), New York.Google Scholar
  31. 31.
    Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. Basic Books (AZ), New York.Google Scholar
  32. 32.
    Nunes, D. S., Zhang, P., & Silva, J. S. (2015). A survey on human-in-the-loop applications towards an internet of all. IEEE Communications Surveys Tutorials, 17(2), 944–965. Scholar
  33. 33.
    Okada, M., Ueki, A., Jonasson, N., Yamanouchi, M., Norlin, C., Sunahara, H., & Inakage, M. (2016). Designing a system for things with unique personalities in IoT. In Proceedings of the 6th International Conference on the Internet of Things (pp. 35–42)
  34. 34.
    Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys Tutorials, 16(1), 414–454. Scholar
  35. 35.
    Pieroni, M., Rizzello, L., Rosini, N., Fantoni, G., De Rossi, D., & Mazzei, D. (2015, December). Affective Internet of Things: Mimicking human-like personality in designing smart-objects. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 400–405).
  36. 36.
    Pintus, A., Carboni, D., & Piras, A. (2012). Paraimpu: A platform for a social web of things. In Proceedings of the 21st International Conference on World Wide Web (pp. 401–404). ACM.
  37. 37.
    Pintus, A., Carboni, D., Serra, A., & Manchinu, A. (2015). Humanizing the internet of things. In WEBIST 2015—11th International Conference on Web Information Systems and Technologies, INSTICC, INSTICC, SCITEPRESS.Google Scholar
  38. 38.
    Ross, P. R., & Wensveen, S. A. (2010). Designing behavior in interaction: Using aesthetic experience as a mechanism for design. International Journal of Design, 4(2), 3–13.Google Scholar
  39. 39.
    Rovelo, G., Degraen, D., Vanacken, D., Luyten, K., & Coninx, K. (2015). Gestu-wan—an intelligible mid-air gesture guidance system for walk-up-and-use displays. In J. Abascal, S. Barbosa, M. Fetter, T. Gross, P. Palanque, & M. Winckler (Eds.), Human-Computer Interaction–INTERACT 2015 (pp. 368–386). Cham: Springer International Publishing.CrossRefGoogle Scholar
  40. 40.
    Schiaffino, S., Armentano, M., & Amandi, A. (2010). Building respectful interface agents. International Journal of Human-Computer Studies, 68(4), 209–222. Scholar
  41. 41.
    Schili, B.N., Adams, N., Want, R. (1994). Context-aware computing applications. In: 1994 First Workshop on Mobile Computing Systems and Applications (pp 85–90).
  42. 42.
    Schmidt, A. (2000). Implicit human computer interaction through context. Personal Technologies, 4(2), 191–199. Scholar
  43. 43.
    Sirkin, D., Mok, B., Yang, S., & Ju, W. (2016). Oh, i love trash: Personality of a robotic trash barrel. In: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (pp. 102–105) ACM, New York, NY, USA, CSCW ’16 Companion.
  44. 44.
    Spadafora, M., Chahuneau, V., Martelaro, N., Sirkin, D., & Ju, W. (2016). Designing the behavior of interactive objects. In: Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 70–77) ACM, New York, NY, USA, TEI ’16.
  45. 45.
    Turcu, C., & Turcu, C. (2012). The social internet of things and the rfid-based robots. In 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems (pp 77–83).
  46. 46.
    Vermeulen, J. (2014). Designing for intelligibility and control in ubiquitous computing environments, Dissertation Hasselt University.
  47. 47.
    Vermeulen, J., Vanderhulst, G., Luyten, K., & Coninx, K. (2010). Pervasivecrystal: Asking and answering why and why not questions about pervasive computing applications. In: 2010 Sixth International Conference on Intelligent Environments, (pp. 271–276).
  48. 48.
    Vermeulen, J., Luyten, K., & Coninx, K. (2012). Understanding complex environments with the feedforward torch. In F. Paternò, B. de Ruyter, P. Markopoulos, C. Santoro, E. van Loenen, & K. Luyten (Eds.), Ambient Intelligence (pp. 312–319). Heidelberg: Springer, Berlin Heidelberg, Berlin.CrossRefGoogle Scholar
  49. 49.
    Weiser, M. (1991). The computer for the 21st century (pp. 66–75), Scientific American.CrossRefGoogle Scholar
  50. 50.
    Weiser, M., & Brown, J. S. (1995). Designing calm technology.
  51. 51.
    Weiser, M., Brown, J. S. (1997). The coming age of calm technology. In Beyond calculation (pp. 75–85). Springer, New York. Scholar
  52. 52.
    Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. International Journal of Communication Systems, 25(9), 1101–1102. Scholar
  53. 53.
    Xia, F., Liu, L., Li, J., Ma, J., & Vasilakos, A. V. (2015). Socially aware networking: A survey. IEEE Systems Journal, 9(3), 904–921. Scholar
  54. 54.
    Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data.
  55. 55.
    Zheng, L., Zhang, H., Han, W., Zhou, X., He, J., Zhang, Z., et al. (2011). Technologies, applications, and governance in the Internet of Things (pp. 141–175). Internet of Things-Global Technological and Societal Trends: River Publishers.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Intel Visual Computing Institute – Saarland Informatics CampusSaarbrückenGermany

Personalised recommendations