Linear-Time Limited Automata
Conference paper
First Online:
Abstract
The time complexity of 1-limited automata is investigated from a descriptional complexity view point. Though the model recognizes regular languages only, it may use quadratic time in the input length. We show that, with a polynomial increase in size and preserving determinism, each 1-limited automaton can be transformed into an halting linear-time equivalent one. We also obtain polynomial transformations into related models, including weight-reducing Hennie machines, and we show exponential gaps for converse transformations in the deterministic case.
Notes
Acknowledgement
We are very indebted to Giovanni Pighizzini for suggesting the problem and for many stimulating conversations.
References
- 1.Bojańczyk, M., Daviaud, L., Guillon, B., Penelle, V.: Which classes of origin graphs are generated by transducers. In: ICALP 2017. LIPIcs, vol. 80, pp. 114:1–114:13 (2017)Google Scholar
- 2.Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205(8), 1173–1187 (2007)MathSciNetCrossRefGoogle Scholar
- 3.Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Comput. 8(6), 553–578 (1965)MathSciNetzbMATHGoogle Scholar
- 4.Hibbard, T.N.: A generalization of context-free determinism. Inf. Comput. 11(1/2), 196–238 (1967)MathSciNetzbMATHGoogle Scholar
- 5.Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)zbMATHGoogle Scholar
- 6.Kapoutsis, C.A.: Predicate characterizations in the polynomial-size hierarchy. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 234–244. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08019-2_24CrossRefGoogle Scholar
- 7.Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited automata. Inf. Comput. 259(2), 259–276 (2018)MathSciNetCrossRefGoogle Scholar
- 8.Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Autom. Lang. Comb. 14(1), 107–124 (2009)MathSciNetzbMATHGoogle Scholar
- 9.Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found. Comput. Sci. 25(07), 897–916 (2014)MathSciNetCrossRefGoogle Scholar
- 10.Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundamenta Informaticae 136(1–2), 157–176 (2015)MathSciNetzbMATHGoogle Scholar
- 11.Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 308–319. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7_23CrossRefGoogle Scholar
- 12.Průša, D.: Weight-reducing hennie machines and their descriptional complexity. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 553–564. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04921-2_45CrossRefzbMATHGoogle Scholar
- 13.Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)MathSciNetCrossRefGoogle Scholar
- 14.Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10(3), 335–338 (1980)MathSciNetCrossRefGoogle Scholar
- 15.Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)MathSciNetCrossRefGoogle Scholar
- 16.Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing Company, Dordrecht (1986)zbMATHGoogle Scholar
Copyright information
© IFIP International Federation for Information Processing 2018