Skip to main content

Relaxation of Residual Stresses Induced by Ultrasonic Shot Peening Due to Cyclic Loading

  • Conference paper
  • First Online:
Advances in Acoustics and Vibration II (ICAV 2018)

Part of the book series: Applied Condition Monitoring ((ACM,volume 13))

Included in the following conference series:

  • 965 Accesses

Abstract

Conventional Shot-Peening is one of the popular surface enhancement processes. It consists on projecting small shots at the surfaces of the metallic components. Ultrasonic Shot-Peening is based on the same principle. The differences between both mechanisms were: the size of shot (from 0, 25 and 1 mm for Conventional Shot-Peening, and 1 to 8 mm for Ultrasonic Shot-Peening) and the velocity (from 20 to 150 m/s for Conventional Shot-Peening, and 3 to 20 m/s for Ultrasonic Shot-Peening). Another difference is the mechanism used for projecting the shots. In Ultrasonic Shot-Peening process the shots, confined in a closed chamber, are projected by sonotrode vibration on the treated specimen that is fixed on the top of this chamber. So, during the Ultrasonic Shot-Peening, the shots can be recovered after the treatment. In this paper, we propose three dimensional finite element model of Ultrasonic Shot-Peening which enable predicting the residual Stresses generated by this process on a semi-infinite target after a repetitive impacts. Moreover, this model is used to evaluate the residual stresses relaxation in AISI 316L target under cyclic tensile loading. The numerical results are validated by comparing the residual stress profile induced by the numerical model with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chaise, T., Li, J., Nelias, D., Kubler, R., Taheri, S., Douchet, G., Robin, V., Gilles, P.: Modeling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP). J. Mater. Process. Technol. 212, 2080–2090 (2012)

    Article  Google Scholar 

  • Rousseau, T., Hoc, T., Gilles, P., Nouguier-Lehon, C.: Effect of bead quantity in ultrasonic shot peening: surface analysis and numerical simulations. J. Mater. Process. Technol. 225, 413–420 (2015)

    Article  Google Scholar 

  • Dalaei, K., Karlsson, B., Svensson, L.E.: Stability of residual stresses created by shot peening of pearlitic steel and their influence on fatigue lifetime. Mater. Sci. Eng. A5282, 1008–1015 (2011)

    Article  Google Scholar 

  • Zaroog, O.S., Aidy, A., Sahari, B.B., Zahari, R.: Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. Int. J. Fatigue 33, 279–285 (2011)

    Article  Google Scholar 

  • Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides, 2nd edn. Dunod, Paris (2002). ISBN 210005662X

    Google Scholar 

  • Laamouri, A., Sidhom, H., Braham, C.: Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: experimental and numerical approaches. Int. J. Fatigue 48, 109–121 (2013)

    Article  Google Scholar 

  • Li, J.: Simulation de Réparation par Soudage et Billage Ultrasonore d’un Alliage à Base Nickel. Ph.D. thesis LaMCoS Lyon (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sondess Manchoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manchoul, S., Seddik, R., Ben Sghaier, R., Fathallah, R. (2019). Relaxation of Residual Stresses Induced by Ultrasonic Shot Peening Due to Cyclic Loading. In: Fakhfakh, T., Karra, C., Bouaziz, S., Chaari, F., Haddar, M. (eds) Advances in Acoustics and Vibration II. ICAV 2018. Applied Condition Monitoring, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-94616-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94616-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94615-3

  • Online ISBN: 978-3-319-94616-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics