Advertisement

Genome-Scale Brain Metabolic Networks as Scaffolds for the Systems Biology of Neurodegenerative Diseases: Mapping Metabolic Alterations

  • Emrah Özcan
  • Tunahan ÇakırEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)

Abstract

Systems-based investigation of diseases requires integrated analysis of cellular networks and high-throughput data of gene products. The use of genome-scale metabolic networks for such integration has led to the elucidation of cellular mechanisms for several cell types from microorganisms to plants. It has become easier and cheaper to generate high-throughput data over years in the form of transcriptome, proteome and metabolome. This has tremendously improved the quality and quantity of information extracted from such data enabling the documentation of active pathways and reactions in cell metabolism. A number of omics-based datasets for several neurodegenerative diseases are now available in public repositories. This increases the potential of using genome-scale brain metabolic networks as a scaffold for this type of data to map metabolic alterations for the purpose of elucidating disease mechanisms and for the diagnosis and treatment of such disorders. This chapter first reviews omics data collected for neurodegenerative diseases to map their effect on metabolism. Later, the potential for genome-scale metabolic modeling of such data is reviewed and discussed in light of recently reconstructed brain metabolic networks at genome-scale.

Keywords

Genome-scale metabolic networks Constraint-based modeling of metabolism Metabolic pathway enrichment Reporter pathway analysis Transcriptome Metabolome Neurodegenerative diseases Alzheimer Parkinson 

Notes

Acknowledgements

This work was financially supported by TUBITAK, The Scientific and Technological Research Council of Turkey (Project Code: 315S302), and by The Turkish Academy of Sciences–Outstanding Young Scientists Award Program (TUBA-GEBIP).

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Abrusan G. Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct. 2012;7:41.CrossRefGoogle Scholar
  2. Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Brief Bioinform. 2006;7:243–55.CrossRefGoogle Scholar
  3. Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, El Hokayem J, Myers AJ. Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res. 2012;11:3053–67.CrossRefGoogle Scholar
  4. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011;479:534–7.CrossRefGoogle Scholar
  5. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A. NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 2011;39:D1005–10.CrossRefGoogle Scholar
  6. Begcevic I, Kosanam H, Martinez-Morillo E, Dimitromanolakis A, Diamandis P, Kuzmanov U, Hazrati LN, Diamandis EP. Semiquantitative proteomic analysis of human hippocampal tissues from Alzheimer’s disease and age-matched control brains. Clin Proteomics. 2013;10:5.CrossRefGoogle Scholar
  7. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet. 2014;15:107–20.CrossRefGoogle Scholar
  8. Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ. A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics. 2010;11:282.CrossRefGoogle Scholar
  9. Buchel F, Saliger S, Drager A, Hoffmann S, Wrzodek C, Zell A, Kahle PJ. Parkinson’s disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of alpha-synuclein. BMC Neurosci. 2013;14:136.CrossRefGoogle Scholar
  10. Çakır T. Reporter pathway analysis from transcriptome data: metabolite-centric versus reaction-centric approach. Sci Rep. 2015;5:14563.CrossRefGoogle Scholar
  11. Çakır T. Constraint-based Modeling of metabolic interactions in and between astrocytes and neurons. In: De Pitta M, Berry H, editors. Computational Glioscience. Berlin: Springer; 2018. [accepted].Google Scholar
  12. Çakır T, Alsan S, Saybasili H, Akin A, Ulgen KO. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model. 2007;4:48.CrossRefGoogle Scholar
  13. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence Working G. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25:288–9.CrossRefGoogle Scholar
  14. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2014;42:D459–71.CrossRefGoogle Scholar
  15. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39:D685–90.CrossRefGoogle Scholar
  16. Cloutier M, Wellstead P. Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson’s disease. IET Syst Biol. 2012;6:65–72.CrossRefGoogle Scholar
  17. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 2003;4:R7.CrossRefGoogle Scholar
  18. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A. 2007;104:1777–82.CrossRefGoogle Scholar
  19. Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B, Schmitt A, Gebicke-Haerter PJ, Falkai P, Grunblatt E, Palkovits M, Arzberger T, Kretzschmar H, Dexter DT, Reynolds R. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm. 2015;122:1055–68.CrossRefGoogle Scholar
  20. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.CrossRefGoogle Scholar
  21. Elstner M, Morris CM, Heim K, Bender A, Mehta D, Jaros E, Klopstock T, Meitinger T, Turnbull DM, Prokisch H. Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol. 2011;122:75–86.CrossRefGoogle Scholar
  22. Gavai AK, Supandi F, Hettling H, Murrell P, Leunissen JA, van Beek JH. Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain. PLoS One. 2015;10:e0119016.CrossRefGoogle Scholar
  23. Glaab E, Schneider R. Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson’s disease. Neurobiol Dis. 2015;74:1–13.CrossRefGoogle Scholar
  24. Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Bussow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell. 2004;15:853–65.CrossRefGoogle Scholar
  25. Gruetter R. In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. Neurochem Int. 2002;41:143–54.CrossRefGoogle Scholar
  26. Holzhutter HG. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem. 2004;271:2905–22.CrossRefGoogle Scholar
  27. Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, van der Vies SM, Rozemuller AJ, Smit AB. Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement. 2016;12(6):654–68.CrossRefGoogle Scholar
  28. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009a;37:1–13.CrossRefGoogle Scholar
  29. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009b;4:44–57.CrossRefGoogle Scholar
  30. Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, Oki NO, Motsinger-Reif AA, Churchill E, Lei Z, Appleby D, Kling MA, Trojanowski JQ, Doraiswamy PM, Arnold SE, Pharmacometabolomics Research N. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry. 2013;3:e244.CrossRefGoogle Scholar
  31. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9.CrossRefGoogle Scholar
  32. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico AR. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 2012;40:D1301–7.CrossRefGoogle Scholar
  33. Lakshmanan M, Koh G, Chung BK, Lee DY. Software applications for flux balance analysis. Brief Bioinform. 2014;15:108–22.CrossRefGoogle Scholar
  34. Lederer CW, Torrisi A, Pantelidou M, Santama N, Cavallaro S. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics. 2007;8:26.CrossRefGoogle Scholar
  35. Lei S, Powers R. NMR metabolomics analysis of Parkinson’s disease. Curr Metabolomics. 2013;1:191–209.CrossRefGoogle Scholar
  36. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R, Konig R, Palsson BO. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol. 2010;28:1279–85.CrossRefGoogle Scholar
  37. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A. 2008;105:4441–6.CrossRefGoogle Scholar
  38. Lloret-Villas A, Varusai TM, Juty N, Laibe C, Le NovEre N, Hermjakob H, Chelliah V. The impact of mathematical modeling in understanding the mechanisms underlying neurodegeneration: evolving dimensions and future directions. CPT Pharmacometrics Syst Pharmacol. 2017;6:73–86.CrossRefGoogle Scholar
  39. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol. 2007;3:135.CrossRefGoogle Scholar
  40. Manavalan A, Mishra M, Feng L, Sze SK, Akatsu H, Heese K. Brain site-specific proteome changes in aging-related dementia. Exp Mol Med. 2013;45:e39.CrossRefGoogle Scholar
  41. Mao L, Verwoerd WS. ORCA: a COBRA toolbox extension for model-driven discovery and analysis. Bioinformatics. 2014;30:584–5.CrossRefGoogle Scholar
  42. Mao L, Nicolae A, Oliveira MA, He F, Hachi S, Fleming RM. A constraint-based modelling approach to metabolic dysfunction in Parkinson’s disease. Comput Struct Biotechnol J. 2015;13:484–91.CrossRefGoogle Scholar
  43. Mardinoglu A, Nielsen J. New paradigms for metabolic modeling of human cells. Curr Opin Biotechnol. 2015;34:91–7.CrossRefGoogle Scholar
  44. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.CrossRefGoogle Scholar
  45. Martin-Jimenez CA, Salazar-Barreto D, Barreto GE, Gonzalez J. Genome-scale reconstruction of the human astrocyte metabolic network. Front Aging Neurosci. 2017;9:23.CrossRefGoogle Scholar
  46. Mastrokolias A, Ariyurek Y, Goeman JJ, van Duijn E, Roos RA, van der Mast RC, van Ommen GB, den Dunnen JT, t Hoen PA, van Roon-Mom WM. Huntington’s disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet. 2015;23:1349–56.CrossRefGoogle Scholar
  47. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2002;22:2718–29.CrossRefGoogle Scholar
  48. Monti C, Bondi H, Urbani A, Fasano M, Alberio T. Systems biology analysis of the proteomic alterations induced by MPP(+), a Parkinson’s disease-related mitochondrial toxin. Front Cell Neurosci. 2015;9:14.CrossRefGoogle Scholar
  49. Occhipinti R, Puchowicz MA, LaManna JC, Somersalo E, Calvetti D. Statistical analysis of metabolic pathways of brain metabolism at steady state. Ann Biomed Eng. 2007;35:886–902.CrossRefGoogle Scholar
  50. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28:245–8.CrossRefGoogle Scholar
  51. Ostaszewski M, Skupin A, Balling R. Neurological diseases from a systems medicine point of view. Methods Mol Biol. 2016;1386:221–50.CrossRefGoogle Scholar
  52. Pacheco MP, Pfau T, Sauter T. Benchmarking procedures for high-throughput context specific reconstruction algorithms. Front Physiol. 2015;6:410.PubMedGoogle Scholar
  53. Patil KR, Nielsen J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A. 2005;102:2685–9.CrossRefGoogle Scholar
  54. Pornputtapong N, Nookaew I, Nielsen J. Human metabolic atlas: an online resource for human metabolism. Database (Oxford). 2015;2015:bav068.CrossRefGoogle Scholar
  55. Ray M, Ruan J, Zhang W. Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol. 2008;9:R148.CrossRefGoogle Scholar
  56. Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH. The role of transposable elements in health and diseases of the central nervous system. J Neurosci. 2013;33:17577–86.CrossRefGoogle Scholar
  57. Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011;39:W307–15.CrossRefGoogle Scholar
  58. Reinke SN, Broadhurst DL, Sykes BD, Baker GB, Catz I, Warren KG, Power C. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult Scler. 2014;20:1396–400.CrossRefGoogle Scholar
  59. Ryu JY, Kim HU, Lee SY. Reconstruction of genome-scale human metabolic models using omics data. Integr Biol (Camb). 2015;7:859–68.CrossRefGoogle Scholar
  60. Sangar V, Eddy JA, Simeonidis E, Price ND. Mechanistic modeling of aberrant energy metabolism in human disease. Front Physiol. 2012;3:404.CrossRefGoogle Scholar
  61. Satoh J, Yamamoto Y, Asahina N, Kitano S, Kino Y. RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer’s disease brains. Dis Markers. 2014;2014:123165.CrossRefGoogle Scholar
  62. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6:1290–307.CrossRefGoogle Scholar
  63. Schramm G, Wiesberg S, Diessl N, Kranz AL, Sagulenko V, Oswald M, Reinelt G, Westermann F, Eils R, Konig R. PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. Bioinformatics. 2010;26:1225–31.CrossRefGoogle Scholar
  64. Sertbaş M, Ulgen K, Cakir T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio. 2014;4:542–53.CrossRefGoogle Scholar
  65. Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A. 1999;96:8235–40.CrossRefGoogle Scholar
  66. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain. 2009;132:1795–809.CrossRefGoogle Scholar
  67. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.CrossRefGoogle Scholar
  68. Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One. 2013;8:e79195.CrossRefGoogle Scholar
  69. Stempler S, Yizhak K, Ruppin E. Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer’s disease. PLoS One. 2014;9:e105383.CrossRefGoogle Scholar
  70. Tarlak F, Sadikoglu H, Cakir T. The role of flexibility and optimality in the prediction of intracellular fluxes of microbial central carbon metabolism. Mol BioSyst. 2014;10:2459–65.CrossRefGoogle Scholar
  71. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31:419–25.CrossRefGoogle Scholar
  72. Tiveci S, Akin A, Cakir T, Saybasili H, Ulgen K. Modelling of calcium dynamics in brain energy metabolism and Alzheimer’s disease. Comput Biol Chem. 2005;29:151–62.CrossRefGoogle Scholar
  73. van Beek JH, Supandi F, Gavai AK, de Graaf AA, Binsl TW, Hettling H. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism. Philos Transact A Math Phys Eng Sci. 2011;369:4295–315.CrossRefGoogle Scholar
  74. Vazquez A. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS One. 2013;8:e63822.CrossRefGoogle Scholar
  75. Verwaest KA, Vu TN, Laukens K, Clemens LE, Nguyen HP, Van Gasse B, Martins JC, Van Der Linden A, Dommisse R. (1)H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochim Biophys Acta. 2011;1812:1371–9.CrossRefGoogle Scholar
  76. Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011;144:986–98.CrossRefGoogle Scholar
  77. Vo TD, Paul Lee WN, Palsson BO. Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol Genet Metab. 2007;91:15–22.CrossRefGoogle Scholar
  78. Wang YL, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol. 2012;6:153.CrossRefGoogle Scholar
  79. Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet. 2009;84:445–58.CrossRefGoogle Scholar
  80. Yizhak K, Gabay O, Cohen H, Ruppin E. Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun. 2013;4:2632.CrossRefGoogle Scholar
  81. Yu C, Boutte A, Yu X, Dutta B, Feala JD, Schmid K, Dave J, Tawa GJ, Wallqvist A, Reifman J. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury. J Neurosci Res. 2015;93:199–214.CrossRefGoogle Scholar
  82. Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes. PLoS Comput Biol. 2010;6:e1000729.CrossRefGoogle Scholar
  83. Zhang L, Li H, Hu X, Benedek DM, Fullerton CS, Forsten RD, Naifeh JA, Li X, Wu H, Benevides KN, Le T, Smerin S, Russell DW, Ursano RJ. Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD. Transl Psychiatry. 2015;5:e580.CrossRefGoogle Scholar
  84. Zhang Y, James M, Middleton FA, Davis RL. Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2005;137B:5–16.CrossRefGoogle Scholar
  85. Zimmerman SB, Trach SO. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol. 1991;222:599–620.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioengineeringGebze Technical UniversityGebzeTurkey

Personalised recommendations