Advertisement

Neural Circuits Mediating Fear Learning and Extinction

  • Roger Marek
  • Pankaj SahEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)

Abstract

The activity of neural circuits that underpin particular behaviours are one of the most interesting questions in neurobiology today. This understanding will not only lead to a detailed understanding of learning and memory formation, but also provides a platform for the development of novel therapeutic approaches to a range of neurological disorders that afflict humans. Among the different behavioural paradigms, Pavlovian fear conditioning and its extinction are two of the most extensively used to study acquisition, consolidation and retrieval of fear-related memories. The amygdala, medial prefrontal cortex (mPFC) and hippocampus are three regions with extensive bidirectional connections, and play key roles in fear processing. In this chapter, we summarise our current understanding of the structure and physiological role of these three regions in fear learning and extinction.

Keywords

Amygdala Fear Post traumatic stress Learning Anxiety 

Notes

Acknowledgments

This work for funded by grants from the National Health and Medical Research Council of Australia and the Centre for Integrative Brain Function from the Australian Research Council (CE140100007).

References

  1. Acoli, GA et. al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neuroscience. 2008; 9:557-568.Google Scholar
  2. Amano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010;13:489–94.CrossRefGoogle Scholar
  3. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53:871–80.CrossRefGoogle Scholar
  4. Cassell MD, Gray TS, Kiss JZ. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol. 1986;246:478–99.CrossRefGoogle Scholar
  5. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–82.CrossRefGoogle Scholar
  6. Conde F, Maire-Lepoivre E, Audinat E, Crepel F. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol. 1995;352:567–93.CrossRefGoogle Scholar
  7. Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990;13:99–103.CrossRefGoogle Scholar
  8. Corcoran KA, Quirk GJ. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci. 2007;27:840–4.CrossRefGoogle Scholar
  9. de Olmos J, Hardy H, Heimer L. Amygdala. In: Paxinos G, editor. The rat nervous system. Sydney: Academic; 1985. p. 317–223.Google Scholar
  10. Delaney AJ, Sah P. Pathway-specific targeting of GABA(A) receptor subtypes to somatic and dendritic synapses in the central amygdala. J Neurophysiol. 2001;86:717–23.CrossRefGoogle Scholar
  11. Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci. 2015;35:3607–15.CrossRefGoogle Scholar
  12. Dumont EC, Martina M, Samson RD, Drolet G, Paré D. Physiological properties of central amygdala neurons: species differences. Eur J Neurosci. 2002;15:544–52.CrossRefGoogle Scholar
  13. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62:757–71.CrossRefGoogle Scholar
  14. Faber ESL, Callister RJ, Sah P. Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J Neurophysiol. 2001;85:714–23.CrossRefGoogle Scholar
  15. Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci. 1992;12:854–63.CrossRefGoogle Scholar
  16. Farb CR, Ledoux JE. Afferents from rat temporal cortex synapse on lateral amygdala neurons that express NMDA and AMPA receptors. Synapse. 1999;33:218–29.CrossRefGoogle Scholar
  17. Freedman LJ, Insel TR, Smith Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol. 2000;421:172–88.CrossRefGoogle Scholar
  18. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:347–470.CrossRefGoogle Scholar
  19. Goosens KA, Maren S. NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur J Neurosci. 2004;20:537–48.CrossRefGoogle Scholar
  20. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature. 2010;468:270–6.CrossRefGoogle Scholar
  21. Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev. 2003;27:555–79.CrossRefGoogle Scholar
  22. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6.CrossRefGoogle Scholar
  23. Hobin JA, Ji J, Maren S. Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus. 2006;16:174–82.CrossRefGoogle Scholar
  24. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.CrossRefGoogle Scholar
  25. Izquierdo I, Furini CR, Myskiw JC. Fear Memory. Physiol Rev. 2016;96:695–750.CrossRefGoogle Scholar
  26. Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, Rainnie DG, Ressler KJ. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci. 2013;33:10396–404.CrossRefGoogle Scholar
  27. Ji J, Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 2007;17:749–58.CrossRefGoogle Scholar
  28. Kim M, Campeau S, Falls WA, Davis M. Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav Neural Biol. 1993;59:5–8.CrossRefGoogle Scholar
  29. Lanuza E, Moncho-Bogani J, Ledoux JE. Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience. 2008;155:959–68.CrossRefGoogle Scholar
  30. Laurent V, Westbrook RF. Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learn Mem. 2008;15:657–66.CrossRefGoogle Scholar
  31. Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D. Amygdala intercalated neurons are required for expression of fear extinction. Nature. 2008;454:642–5.CrossRefGoogle Scholar
  32. Lopez de Armentia M, Sah P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J Neurophysiol. 2004;92:1285–94.CrossRefGoogle Scholar
  33. Lubin FD, Gupta S, Parrish RR, Grissom NM, Davis RL. Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist. 2011;17:616–32.CrossRefGoogle Scholar
  34. Mahanty NK, Sah P. The physiology of excitatory synapses in the lateral and basolateral amygdala. Soc Neurosci. Abstracts 22; 1996.Google Scholar
  35. Mamiya N, Goldenring JR, Tsunoda Y, Modlin IM, Yasui K, Usuda N, Ishikawa T, Natsume A, Hidaka H. Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem Biophys Res Commun. 1993;195:608–15.CrossRefGoogle Scholar
  36. Marek, R. Strobel, C., Bredy, TW., Pankaj Sah, P. The amygdala and medial prefrontal cortex: partners in the fear circuit. The Journal of Physiology. 2013; 591(10):2381–2391CrossRefGoogle Scholar
  37. Maren S, Holt W. The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res. 2000;110:97–108.CrossRefGoogle Scholar
  38. Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5:844–52.CrossRefGoogle Scholar
  39. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807.CrossRefGoogle Scholar
  40. Martina M, Royer S, Pare D. Physiological properties of central medial and central lateral amygdala neurons. J Neurophysiol. 1999;82:1843–54.CrossRefGoogle Scholar
  41. Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol. 2012;4(6):a005751.CrossRefGoogle Scholar
  42. McDonald AJ. Neurons of the lateral and basolateral amygdaloid nuclei: a golgi study in the rat. J Comp Neurol. 1982;212:293–312.CrossRefGoogle Scholar
  43. McDonald AJ. Projection neurons of the basolateral amygdala: a correlative Golgi and retrograde tract tracing study. Brain Res Bull. 1992;28:179–85.CrossRefGoogle Scholar
  44. McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Brain Res. 1998;55:257–332.Google Scholar
  45. McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience. 2001;105:681–93.CrossRefGoogle Scholar
  46. McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res. 2017;95(3):797–820.CrossRefGoogle Scholar
  47. McDonald AJ, Mascagni F, Guo L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1996;71:55–75.CrossRefGoogle Scholar
  48. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420:70–4.CrossRefGoogle Scholar
  49. Millhouse OE. The intercalated cells of the amygdala. J Comp Neurol. 1986;247:246–71.CrossRefGoogle Scholar
  50. Miserendino MJD, Sananes CB, Melia KR, Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature. 1990;345:716–8.CrossRefGoogle Scholar
  51. Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett. 1993;163:109–13.CrossRefGoogle Scholar
  52. Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63.CrossRefGoogle Scholar
  53. Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38:725–43.CrossRefGoogle Scholar
  54. Pare D, Duvarci S. Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol. 2012;22:717–23.CrossRefGoogle Scholar
  55. Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex. 2010;20:393–403.CrossRefGoogle Scholar
  56. Pavlov IP. Conditioned reflexes. New York: Dover; 1927.Google Scholar
  57. Pinard CR, Mascagni F, McDonald AJ. Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience. 2012;205:112–24.CrossRefGoogle Scholar
  58. Pinto A, Sesack SR. Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct. 2008;213:159–75.CrossRefGoogle Scholar
  59. Pitkänen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997;20:517–23.CrossRefGoogle Scholar
  60. Price JL, Russchen FT, Amaral DG. The limbic region. II: the amygdaloid complex. In: Bjorklund A, Hökfelt T, Swanson LW, editors. Handbook of chemical neuroanatomy, vol. 5, Integrated systems of the CNS, part I. Amsterdam: Elsevier Science; 1987.Google Scholar
  61. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.CrossRefGoogle Scholar
  62. Rainnie DG, Asprodini EK, Schinnick-Gallagher P. Inhibitory transmission in the basolateral amygdala. J Neurophysiol. 1991;66:999–1009.CrossRefGoogle Scholar
  63. Royer S, Paré D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience. 2002;115:455–62.CrossRefGoogle Scholar
  64. Royer S, Martina M, Paré D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci. 1999;19:10575–83.CrossRefGoogle Scholar
  65. Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83:803–34.CrossRefGoogle Scholar
  66. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ. Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci. 2004;24:5704–10.CrossRefGoogle Scholar
  67. Sotres-Bayon F, Quirk GJ. Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol. 2010;20:231–5.CrossRefGoogle Scholar
  68. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron. 2012;76:804–12.CrossRefGoogle Scholar
  69. Spampanato J, Polepalli J, Sah P. Interneurons in the basolateral amygdala. Neuropharmacology. 2011;60:765–73.CrossRefGoogle Scholar
  70. Strobel C, Marek R, Gooch HM, Sullivan RK, Sah P. Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep. 2015.  https://doi.org/10.1016/j.celrep.2015.02.008. [Epub ahead of print].CrossRefGoogle Scholar
  71. Van De Werd HJ, Rajkowska G, Evers P, Uylings HB. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct. 2010;214:339–53.CrossRefGoogle Scholar
  72. Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science. 2011;333:104–7.CrossRefGoogle Scholar
  73. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.CrossRefGoogle Scholar
  74. Washburn MS, Moises HC. Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J Neurosci. 1992;12:4066–79.CrossRefGoogle Scholar
  75. Weisskopf MG, LeDoux JE. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J Neurophysiol. 1999;81:930–4.CrossRefGoogle Scholar
  76. Windels F, Yan S, Stratton PG, Sullivan R, Crane JW, Sah P. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons. PLoS One. 2016;11:e0155192.CrossRefGoogle Scholar
  77. Woodruff AR, Sah P. Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons. J Neurophysiol. 2007a;98:2956–61.CrossRefGoogle Scholar
  78. Woodruff AR, Sah P. Networks of parvalbumin-positive interneurons in the basolateral amygdala. J Neurosci. 2007b;27:553–63.CrossRefGoogle Scholar
  79. Woodruff AR, Monyer H, Sah P. GABAergic excitation in the basolateral amygdala. J Neurosci. 2006;26:11881–7.CrossRefGoogle Scholar
  80. Yang CR, Seamans JK, Gorelova N. Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci. 1996;16:1904–21.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland Brain Institute, The University of QueenslandBrisbaneAustralia

Personalised recommendations