Skip to main content

Bile Duct Development and the Notch Signaling Pathway

  • Chapter
  • First Online:
Alagille Syndrome

Abstract

Intrahepatic bile duct development is a sophisticated process that begins with a simple, perivenular arrangement of hepatoblasts and ends with an intricate, arborizing, hierarchical network of ducts that navigate the liver parenchyma, contributing to liver health and disease not only via drainage of bile but via direct and indirect interactions with surrounding cells. Development of the intrahepatic bile ducts depends upon cell specification and subsequent morphogenesis, both involving intercellular signaling through the Notch pathway. Alteration of this pathway by mutations in critical Notch ligands and/or Notch receptors disrupts normal intrahepatic bile duct formation and leads to the hepatobiliary phenotype seen in Alagille syndrome. More complete insight into the complexities of intrahepatic bile duct development and the signaling pathways involved (Notch and others) is a requisite preamble to defining cellular and molecular therapies with the potential of attenuating, or reversing, biliary injury in Alagille syndrome and other cholangiopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63(4):1023–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keppler D. Progress in the molecular characterization of hepatobiliary transporters. Dig Dis. 2017;35(3):197–202.

    Article  PubMed  Google Scholar 

  3. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6):1739–45.

    Article  PubMed  Google Scholar 

  4. Yoo KS, Lim WT, Choi HS. Biology of Cholangiocytes: from bench to bedside. Gut Liver. 2016;10(5):687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramesh Babu CS, Sharma M. Biliary tract anatomy and its relationship with venous drainage. J Clin Exp Hepatol. 2014;4(Suppl 1):S18–26.

    Article  PubMed  Google Scholar 

  6. Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology. 2016;64(1):277–86.

    Article  PubMed  Google Scholar 

  7. Baer MM, Chanut-Delalande H, Affolter M. Cellular and molecular mechanisms underlying the formation of biological tubes. Curr Top Dev Biol. 2009;89:137–62.

    Article  CAS  PubMed  Google Scholar 

  8. Lemaigre FP. Molecular mechanisms of biliary development. Prog Mol Biol Transl Sci. 2010;97:103–26.

    Article  CAS  PubMed  Google Scholar 

  9. Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol. 2017;9(8):a027862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. II. Ontogenic liver growth in childhood. Virchows Arch. 2011;458(3):261–70.

    Article  PubMed  Google Scholar 

  11. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme "ductal plate malformation". Hepatology. 1992;16(4):1069–83.

    Article  CAS  PubMed  Google Scholar 

  12. Raynaud P, Tate J, Callens C, Cordi S, Vandersmissen P, Carpentier R, et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology. 2011;53(6):1959–66.

    Article  CAS  PubMed  Google Scholar 

  13. Terada T. Human ductal plate and its derivatives express antigens of cholangiocellular, hepatocellular, hepatic stellate/progenitor cell, stem cell, and neuroendocrine lineages, and proliferative antigens. Exp Biol Med (Maywood). 2017;242(9):907–17.

    Article  CAS  Google Scholar 

  14. Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology. 1988;8(6):1586–95.

    Article  PubMed  Google Scholar 

  15. Vestentoft PS, Jelnes P, Hopkinson BM, Vainer B, Mollgard K, Quistorff B, et al. Three-dimensional reconstructions of intrahepatic bile duct tubulogenesis in human liver. BMC Dev Biol. 2011;11:56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology. 2009;136(7):2325–33.

    Article  PubMed  CAS  Google Scholar 

  17. Carpentier R, Suner RE, van Hul N, Kopp JL, Beaudry JB, Cordi S, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology. 2011;141(4):1432–8. 8 e1–4

    Article  CAS  PubMed  Google Scholar 

  18. Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol Biol Cell. 2009;20(9):2486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takashima Y, Terada M, Kawabata M, Suzuki A. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology. 2015;61(3):1003–11.

    Article  PubMed  Google Scholar 

  20. Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol. 1995;146(1):67–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol. 2017;66:43–50.

    Article  CAS  PubMed  Google Scholar 

  22. Kaneko K, Kamimoto K, Miyajima A, Itoh T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology. 2015;61(6):2056–66.

    Article  CAS  PubMed  Google Scholar 

  23. Tanimizu N, Kaneko K, Itoh T, Ichinohe N, Ishii M, Mizuguchi T, et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 2016;64(1):175–88.

    Article  CAS  PubMed  Google Scholar 

  24. Colombo F, Armstrong C, Duan J, Rioux N. A high throughput in vitro mrp2 assay to predict in vivo biliary excretion. Xenobiotica. 2012;42(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  25. Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24(11):2437–47.

    Article  CAS  PubMed  Google Scholar 

  26. Kopan R, Ilagan MX. The canonical notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol. 2003;194(3):237–55.

    Article  CAS  PubMed  Google Scholar 

  28. Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol. 2012;23(4):450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol. 2004;14(5):320–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M, Myllykangas L, et al. CADASIL and CARASIL. Brain Pathol. 2014;24(5):525–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  CAS  PubMed  Google Scholar 

  32. Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn. 2007;236(6):1456–74.

    Article  CAS  PubMed  Google Scholar 

  33. Warthen DM, Moore EC, Kamath BM, Morrissette JJ, Sanchez-Lara PA, Piccoli DA, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat. 2006;27(5):436–43.

    Article  CAS  PubMed  Google Scholar 

  34. Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet. 2012;49(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  35. Kamath BM, Krantz ID, Spinner NB, Heubi JE, Piccoli DA. Monozygotic twins with a severe form of Alagille syndrome and phenotypic discordance. Am J Med Genet. 2002;112(2):194–7.

    Article  PubMed  Google Scholar 

  36. Kamath BM, Munoz PS, Bab N, Baker A, Chen Z, Spinner NB, et al. A longitudinal study to identify laboratory predictors of liver disease outcome in Alagille syndrome. J Pediatr Gastroenterol Nutr. 2010;50(5):526–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Izumi K, Hayashi D, Grochowski CM, Kubota N, Nishi E, Arakawa M, et al. Discordant clinical phenotype in monozygotic twins with Alagille syndrome: possible influence of non-genetic factors. Am J Med Genet A. 2016;170A(2):471–5.

    Article  PubMed  CAS  Google Scholar 

  38. Lin HC, Le Hoang P, Hutchinson A, Chao G, Gerfen J, Loomes KM, et al. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features. Am J Med Genet A. 2012;158A(5):1005–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 2010;137(23):4061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology. 2004;127(6):1775–86.

    Article  CAS  PubMed  Google Scholar 

  41. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117(Pt 15):3165–74.

    Article  CAS  PubMed  Google Scholar 

  42. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129(4):1075–82.

    Article  CAS  PubMed  Google Scholar 

  43. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  44. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, et al. Embryonic lethality and vascular defects in mice lacking the notch ligand Jagged1. Hum Mol Genet. 1999;8(5):723–30.

    Article  CAS  PubMed  Google Scholar 

  45. Loomes KM, Russo P, Ryan M, Nelson A, Underkoffler L, Glover C, et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology. 2007;45(2):323–30.

    Article  CAS  PubMed  Google Scholar 

  46. Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N, Haltiwanger RS, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology. 2016;63(2):550–65.

    Article  CAS  PubMed  Google Scholar 

  47. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009;136(10):1727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29(3):822–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology. 2010;51(4):1391–400.

    Article  CAS  PubMed  Google Scholar 

  50. Kellendonk C, Opherk C, Anlag K, Schutz G, Tronche F. Hepatocyte-specific expression of Cre recombinase. Genesis. 2000;26(2):151–3.

    Article  CAS  PubMed  Google Scholar 

  51. Falix FA, Weeda VB, Labruyere WT, Poncy A, de Waart DR, Hakvoort TB, et al. Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning. Dev Biol. 2014;396(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  52. Jeliazkova P, Jors S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM, et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology. 2013;57(6):2469–79.

    Article  CAS  PubMed  Google Scholar 

  53. Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology. 2009;50(3):871–9.

    Article  CAS  PubMed  Google Scholar 

  54. Postic C, Magnuson MA. DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis. 2000;26(2):149–50.

    Article  CAS  PubMed  Google Scholar 

  55. Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008;48(2):607–16.

    Article  CAS  PubMed  Google Scholar 

  56. Lozier J, McCright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice. PLoS One. 2008;3(3):e1851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development. 1995;121(5):1533–45.

    Article  CAS  PubMed  Google Scholar 

  58. Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development. 1999;126(15):3415–24.

    Article  CAS  PubMed  Google Scholar 

  59. Huppert SS, Le A, Schroeter EH, Mumm JS, Saxena MT, Milner LA, et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature. 2000;405(6789):966–70.

    Article  CAS  PubMed  Google Scholar 

  60. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev. 1994;8(6):707–19.

    Article  CAS  PubMed  Google Scholar 

  61. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14(11):1343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krebs LT, Xue Y, Norton CR, Sundberg JP, Beatus P, Lendahl U, et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis. 2003;37(3):139–43.

    Article  CAS  PubMed  Google Scholar 

  63. Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J, et al. Gamma-secretase functions through notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell. 2004;7(5):731–43.

    Article  CAS  PubMed  Google Scholar 

  64. Ortica S, Tarantino N, Aulner N, Israel A, Gupta-Rossi N. The 4 notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB J. 2014;28(2):603–14.

    Article  CAS  PubMed  Google Scholar 

  65. James AC, Szot JO, Iyer K, Major JA, Pursglove SE, Chapman G, et al. Notch4 reveals a novel mechanism regulating notch signal transduction. Biochim Biophys Acta. 2014;1843(7):1272–84.

    Article  CAS  PubMed  Google Scholar 

  66. Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol. 2015;402(1):98–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, et al. A notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development. 2012;139(14):2488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam AB, et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun. 2015;6:8510.

    Article  CAS  PubMed  Google Scholar 

  69. Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell. 2009;36(5):872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Libbrecht L, Spinner NB, Moore EC, Cassiman D, Van Damme-Lombaerts R, Roskams T. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol. 2005;29(6):820–6.

    Article  PubMed  Google Scholar 

  71. Subramaniam P, Knisely A, Portmann B, Qureshi SA, Aclimandos WA, Karani JB, et al. Diagnosis of Alagille syndrome-25 years of experience at King's college hospital. J Pediatr Gastroenterol Nutr. 2011;52(1):84–9.

    Article  CAS  PubMed  Google Scholar 

  72. Dahms BB, Petrelli M, Wyllie R, Henoch MS, Halpin TC, Morrison S, et al. Arteriohepatic dysplasia in infancy and childhood: a longitudinal study of six patients. Hepatology. 1982;2(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kahn EI, Daum F, Markowitz J, Aiges HW, Schneider KM, So HB, et al. Arteriohepatic dysplasia. II Hepatobiliary morphology Hepatology. Hepatology. 1983;3(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  74. Rapp JB, Bellah RD, Maya C, Pawel BR, Anupindi SA. Giant hepatic regenerative nodules in Alagille syndrome. Pediatr Radiol. 2017;47(2):197–204.

    Article  PubMed  Google Scholar 

  75. Alhammad A, Kamath BM, Chami R, Ng VL, Chavhan GB. Solitary hepatic nodule adjacent to the right portal vein: a common finding of Alagille syndrome? J Pediatr Gastroenterol Nutr. 2016;62(2):226–32.

    Article  PubMed  Google Scholar 

  76. Suzuki K, Tanaka M, Watanabe N, Saito S, Nonaka H, Miyajima A. p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology. 2008;135(1):270–81. e3

    Article  CAS  PubMed  Google Scholar 

  77. Kaylan KB, Ermilova V, Yada RC, Underhill GH. Combinatorial microenvironmental regulation of liver progenitor differentiation by notch ligands, TGFbeta, and extracellular matrix. Sci Rep. 2016;6:23490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. del Alamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in notch signalling. Curr Biol. 2011;21(1):R40–7.

    Article  PubMed  CAS  Google Scholar 

  79. de Celis JF, Bray S. Feed-back mechanisms affecting notch activation at the dorsoventral boundary in the Drosophila wing. Development. 1997;124(17):3241–51.

    Article  PubMed  Google Scholar 

  80. Jacobsen TL, Brennan K, Arias AM, Muskavitch MA. Cis-interactions between Delta and notch modulate neurogenic signalling in Drosophila. Development. 1998;125(22):4531–40.

    Article  CAS  PubMed  Google Scholar 

  81. Klein T, Brennan K, Arias AM. An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol. 1997;189(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  82. Micchelli CA, Rulifson EJ, Blair SS. The function and regulation of cut expression on the wing margin of Drosophila: notch, wingless and a dominant negative role for Delta and serrate. Development. 1997;124(8):1485–95.

    Article  CAS  PubMed  Google Scholar 

  83. Formosa-Jordan P, Ibanes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One. 2014;9(4):e95744.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Walter TJ, Vanderpool C, Cast AE, Huppert SS. Intrahepatic bile duct regeneration in mice does not require Hnf6 or notch signaling through Rbpj. Am J Pathol. 2014;184(5):1479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vanderpool C, Sparks EE, Huppert KA, Gannon M, Means AL, Huppert SS. Genetic interactions between hepatocyte nuclear factor-6 and notch signaling regulate mouse intrahepatic bile duct development in vivo. Hepatology. 2012;55(1):233–43.

    Article  PubMed  CAS  Google Scholar 

  86. Ernst LM, Spinner NB, Piccoli DA, Mauger J, Russo P. Interlobular bile duct loss in pediatric cholestatic disease is associated with aberrant cytokeratin 7 expression by hepatocytes. Pediatr Dev Pathol. 2007;10(5):383–90.

    Article  PubMed  Google Scholar 

  87. Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M, et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol. 2007;171(2):641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fukuda K, Sugihara A, Nakasho K, Tsujimura T, Yamada N, Okaya A, et al. The origin of biliary ductular cells that appear in the spleen after transplantation of hepatocytes. Cell Transplant. 2004;13(1):27–33.

    Article  PubMed  Google Scholar 

  89. Limaye PB, Alarcon G, Walls AL, Nalesnik MA, Michalopoulos GK, Demetris AJ, et al. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab Investig. 2008;88(8):865–72.

    Article  CAS  PubMed  Google Scholar 

  90. Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology. 2005;41(3):535–44.

    Article  CAS  PubMed  Google Scholar 

  91. Sekiya S, Suzuki A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol. 2014;184(5):1468–78.

    Article  CAS  PubMed  Google Scholar 

  92. Tanimizu N, Nishikawa Y, Ichinohe N, Akiyama H, Mitaka T. Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM-) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J Biol Chem. 2014;289(11):7589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15(5):605–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013;27(7):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157(6):1324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fiorotto R, Raizner A, Morell CM, Torsello B, Scirpo R, Fabris L, et al. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J Hepatol. 2013;59(1):124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 2005;19(16):1849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takayama K, Kawabata K, Nagamoto Y, Inamura M, Ohashi K, Okuno H, et al. CCAAT/enhancer binding protein-mediated regulation of TGFbeta receptor 2 expression determines the hepatoblast fate decision. Development. 2014;141(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  99. Cordi S, Godard C, Saandi T, Jacquemin P, Monga SP, Colnot S, et al. Role of beta-catenin in development of bile ducts. Differentiation. 2016;91(1–3):42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 2012;122(8):2911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology. 2008;47(5):1702–13.

    Article  CAS  PubMed  Google Scholar 

  102. Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from notch-mediated conversion of hepatocytes. J Clin Invest. 2012;122(11):3914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA. Endothelial expression of the notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A. 2008;105(6):1955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chillakuri CR, Sheppard D, Ilagan MX, Holt LR, Abbott F, Liang S, et al. Structural analysis uncovers lipid-binding properties of notch ligands. Cell Rep. 2013;5(4):861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Luca VC, Kim BC, Ge C, Kakuda S, Wu D, Roein-Peikar M, et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science. 2017;355(6331):1320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kovall RA, Gebelein B, Sprinzak D, Kopan R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell. 2017;41(3):228–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey S. Huppert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huppert, S.S., Campbell, K.M. (2018). Bile Duct Development and the Notch Signaling Pathway. In: Kamath, B., Loomes, K. (eds) Alagille Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-94571-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94571-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94570-5

  • Online ISBN: 978-3-319-94571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics