Skip to main content

The TU Hand: Using Compliant Connections to Modulate Grasping Behavior

  • Conference paper
  • First Online:
Robotic Grasping and Manipulation (RGMC 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 816))

Included in the following conference series:

Abstract

Guided by the notion that the five-fingered anthropomorphic hand is a good general purpose manipulator, Team Tulsa approached the hand-in-hand portion of the grasping and manipulation competition using a simplified anthropomorphic hand. The hand had a simplified thumb, fixed in the opposed position, and only two actuators. Motions of the fingers and thumb were coupled together using a “ties and skips” architecture where thumb and finger tendons were tied to specific coils of a “mainspring” in a manner that produced the best behavior across the wide range of challenges. The actuators could move or deform the spring in common mode, which resulted in an enveloping grasp) or differential mode (which resulted in a pinch grasp) and superimpose the two modes. The compliant nature of the hand allowed the fingers to conform to the object as the grasp was acquired. This strategy allowed the retrieval of all objects from the basket (all on the first or second attempt by the volunteer), and scooping peas from the dish, but could not operate the hammer (due to its weight) the syringe, or the scissors (as they required increased dexterity).

Thanks to Fahad Ansari, University of Tulsa Junior, for serving as the unaffiliated volunteer for our simulated competition in Tulsa. This research was supported by NSF NRI 1427250.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work, “Anthropomorphic” can be taken to mean having a distinct “thumb” placed in opposition to the fingers with distinct differences in morphology and kinematics from the remaining fingers and with morphology of the fingers generally human in kinematics, appearance and proportion. Not all are five-fingered. For a more quantitative measure of anthropomorphism, the reader is referred to Liarokapis [17].

  2. 2.

    In principle, linkage-based systems could be driven bidirectionally and independently drive n joints with only n actuators, but design of such a mechanism is extremely challenging. All linkage-based hands the authors are aware of are underactuated.

References

  1. Deshpande, A.D., Ko, J., Fox, D., Matsuoka, Y.: Anatomically correct testbed hand control: muscle and joint control strategies. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 4416–4422 (2009)

    Google Scholar 

  2. Weghe, M.V., Rogers, M., Weissert, M., Matsuoka, Y.: The ACT hand: design of the skeletal structure. In: 2004 IEEE International Conference on Robotics and Automation, pp. 3375–3379 (2004)

    Google Scholar 

  3. Deshpande, A.D.: Contribution of passive properties of muscle-tendon units to the metacarpophalangeal joint torque of the index finger. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 288–294, September 2010

    Google Scholar 

  4. Chang, L.Y., Matsuoka, Y.: A kinematic thumb model for the ACT hand. In: Proceedings - IEEE International Conference on Robotics and Automation 2006, pp. 1000–1005 (2006)

    Google Scholar 

  5. Deshpande, A.D., Xu, Z., Weghe, M.J.V., Brown, B.H., Ko, J., Chang, L.Y., Wilkinson, D.D., Bidic, S.M., Matsuoka, Y.: Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 18(1), 238–250 (2013)

    Article  Google Scholar 

  6. Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)

    Article  Google Scholar 

  7. Odhner, L.U., Ma, R.R., Dollar, A.M.: Exploring dexterous manipulation workspaces with the iHY hand. J. Robot. Soc. Jpn 32(4), 318–322 (2014)

    Article  Google Scholar 

  8. Cutkosky, M.R.: Robotic Grasping and Fine Manipulation. Kluwer International Series in Engineering and Computer Science: Robotics. Kluwer Academic Publishers (1985)

    Google Scholar 

  9. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robots 38, 65–88 (2015)

    Article  Google Scholar 

  10. Miller, A.T., Allen, P.K.: GraspIt! A versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  11. Lin, Y., Sun, Y.: Grasp planning to maximize task coverage. Int. J. Robot. Res. 34(9), 1195–1210 (2015)

    Article  Google Scholar 

  12. Phoka, T., Pipattanasomporn, P., Niparnan, N., Sudsang, A.: Regrasp planning of four-fingered hand for parallel grasp of a polygonal object. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 779–784. IEEE (2005)

    Google Scholar 

  13. Das, D., Rake, N.J., Schultz, J.A.: Compliantly underactuated hands based on multiport networks. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 1010–1015, November 2016

    Google Scholar 

  14. Birglen, L., Gosselin, C.M.: Kinetostatic analysis of underactuated fingers. IEEE Trans. Robot. Autom. 20(2), 211–221 (2004)

    Article  Google Scholar 

  15. Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13(3), 351–359 (1978)

    Article  Google Scholar 

  16. Williams, D.J.: Grant’s atlas of anatomy, eleventh edition by Anne M.R. Agur and Arthur F. Dalley. Clin. Anat. 19(6), 575 (2006)

    Article  Google Scholar 

  17. Liarokapis, M.V.: Quantifying anthropomorphism of robot hands. In: IEEE International Conference on Robotics and Automation, Karlsruhe (2013)

    Google Scholar 

  18. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)

    Google Scholar 

  19. Soto Martell, J.W., Gini, G.: Robotic hands: design review and proposal of new design process. World Acad. Sci. Eng. Technol. 26, 85–90 (2007)

    Google Scholar 

  20. Jacobsen, S.C., Wood, J.E., Knutti, D.F., Biggers, K.B.: The Utah/M.I.T. Dextrous hand: work in progress. Int. J. Robot. Res. 3(4), 21–50 (1984)

    Article  Google Scholar 

  21. Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., Biggers, K.: Design of the UTAH/MIT Dextrous hand. In: 1986 IEEE International Conference on Robotics and Automation, Proceedings, vol. 3, pp. 1520–1532. IEEE (1986)

    Google Scholar 

  22. Mason, M.T., Salisbury, J.K.: Robot Hands and the Mechanics of Manipulation, 1st edn. MIT Press, Cambridge (1985)

    Google Scholar 

  23. Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G., Siegwart, R.: The hand of the dlr hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)

    Article  Google Scholar 

  24. Dalley, S.A., Wiste, T.E., Varol, H.A., Goldfarb, M.: A multigrasp hand prosthesis for transradial amputees. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 5062–5065. IEEE (2010)

    Google Scholar 

  25. Wiste, T.E., Dalley, S.A., Varol, H.A., Goldfarb, M.: Design of a multigrasp transradial prosthesis. J. Med. Dev. 5(3), 031009 (2011)

    Article  Google Scholar 

  26. Pons, J.L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S., Van Moorleghem, W.: The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16(2), 143–163 (2004)

    Article  Google Scholar 

  27. Massa, B., Roccella, S., Carrozza, M.C., Dario, P.: Design and development of an underactuated prosthetic hand. In: IEEE International Conference on Robotics and Automation 2002, Washington, DC, pp. 3374–3379 (2002)

    Google Scholar 

  28. Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M.H., Liu, Y.W., Wei, R., Xie, Z.W.: The modular multisensory DLR-HIT-Hand. Mech. Mach. Theory 42(5), 612–625 (2007)

    Article  Google Scholar 

  29. Zatsiorsky, V.M., Li, Z.-M., Latash, M.L.: Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol. Cybern. 79(2), 139–150 (1998)

    Article  Google Scholar 

  30. Tedrake, R.: Underactuated robotics: Learning, planning, and control for efficient and agile machines: Course notes for MIT 6.832

    Google Scholar 

  31. Birglen, L.: Force analysis of connected differential mechanisms: application to grasping. Int. J. Robot. Res. 25(10), 1033–1046 (2006)

    Article  Google Scholar 

  32. Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_28

    Chapter  Google Scholar 

  33. Ciocarlie, M., Hicks, F.M., Holmberg, R., Hawke, J., Schlicht, M., Gee, J., Stanford, S., Bahadur, R.: The velo gripper: a versatile single-actuator design for enveloping, parallel and fingertip grasps. Int. J. Robot. Res. 33(5), 753–767 (2014)

    Article  Google Scholar 

  34. Dechev, N., Cleghorn, W.L., Naumann, S.: Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36(10), 1157–1173 (2001)

    Article  Google Scholar 

  35. Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)

    Article  Google Scholar 

  36. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. Official J. Soc. Neurosci. 18(23), 10105–15 (1998)

    Article  Google Scholar 

  37. Gabiccini, M., Farnioli, E., Bicchi, A.: Grasp and manipulation analysis for synergistic underactuated hands under general loading conditions. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2836–2842, May 2012

    Google Scholar 

  38. Brown, C.Y., Asada, H.H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2877–2882, October 2007

    Google Scholar 

  39. Martell, M.J., Schultz, J.A.: Multiport modeling of force and displacement in elastic transmissions for underactuated hands. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, pp. 1074–1079 (2014)

    Google Scholar 

  40. Howell, L.L.: Intro to compliant mechanisms. http://compliantmechanisms.byu.edu/content/intro-compliant-mechanisms. Accessed 31 Jan 2017

  41. Yoon, D., Lee, G., Lee, S., Choi, Y.: Underactuated finger mechanism for natural motion and self-adaptive grasping towards bionic partial hand. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 548–553. IEEE, June 2016

    Google Scholar 

  42. Pulleyking, S., Das, D., Schultz, J.: Simplified robotic thumb inspired by surgical intervention. In: Proceedings of the 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 613–619 (2016)

    Google Scholar 

  43. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)

    Article  Google Scholar 

  44. Schultz, J., Ueda, J.: Two-port network models for compliant rhomboidal strain amplifiers. IEEE Trans. Robot. 29(1), 42–54 (2013)

    Article  Google Scholar 

  45. Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: IEEE International Conference on Robotics and Automation, Proceedings 2000 ICRA, Millennium Conference, Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 255–262 (2000)

    Google Scholar 

  46. Cutkosky, M.R., Kao, I.: Computing and controlling compliance of a robotic hand. IEEE Robot. Autom. 5(2), 151–165 (1989)

    Article  Google Scholar 

  47. Rake, N.J., Skinner, S.P., O’Mahony, G.D., Schultz, J.A.: Modeling and implementation of a simplified human tendon structure in a robotic finger. In: Proceedings of the 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipayan Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, D., Rake, N.J., Schultz, J.A. (2018). The TU Hand: Using Compliant Connections to Modulate Grasping Behavior. In: Sun, Y., Falco, J. (eds) Robotic Grasping and Manipulation. RGMC 2016. Communications in Computer and Information Science, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-319-94568-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94568-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94567-5

  • Online ISBN: 978-3-319-94568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics